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Abstract

This thesis studies how certain popular algorithms in the field of image and audio pro-
cessing can be accelerated on mobile devices by means of parallel execution on their
graphics processing unit (GPU). Several technologies with which this can be achieved
are compared in terms of possible performance improvements, hardware and software
support, as well as limitations of their programming model and functionality. The re-
sults of this research are applied in a practical project, consisting of performance im-
provements for marker detection in an Augmented Reality application for mobile de-
vices.
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1. Introduction

This thesis explores the possibilities of parallel computing on mobile devices by harness-
ing the power of their built-in multi-core graphics processing unit (GPU). It shows by
which means and technologies algorithms for digital signal processing (DSP), especially
in the field of image processing, can be made to execute in parallel on such graphics units
in order to improve the overall performance of a mobile application.

1.1. Motivation

One of the basic principles of computer engineering and hardware design is Moore’s
Law [Moo98], which states that the number of transistors on integrated circuits doubles
about once every two years. This observation is connected to the increasing processing
power of integrated circuits and their ongoing miniaturization. These advances made
small handheld devices, such as mobile telephones and later modern mobile devices like
smartphones and tablets, possible.

At the same time it should be clarified that Moore’s “Law” is an observation rather than
a natural law and as such it is not universally true, although many software developers
have been accustomed to what Sutter [Sut05] described in 2005 as the “free lunch”:
Ever increasing processor clock-speeds resulted in “automatically” faster running pro-
grams for each chip generation. As Sutter describes, this can no longer be taken for
granted, since the processor manufacturers “have run out of room with most of their
traditional approaches to boosting CPU performance.” Due to this, they changed their
strategy to produce multi-core processors that share the workload. Since “[a]ll com-
puters are now parallel“ as McCool et al. say, it is “necessary to use explicit parallel
programming to get the most out of such computers” [MRR12, p. 1]. Applications do
not receive automatically improved performance merely with the addition of cores, as
will later be shown. Thus, one solution for improving the performance of algorithms
even as Moore’s Law produces diminishing returns or halts completely, is to better use
the available power of current and future hardware when writing portable and scalable
software.

GPUs are high-end multi-core hardware that can run arbitrary parallel computations
via general purpose computing on graphics processing units (GPGPU). With this it is
possible to turn normal desktop computers into small “supercomputers” with hundreds
of parallel floating-point operation units. Since most modern mobile devices also contain
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a GPU, it should be possible to harness the power of their parallel processing capabil-
ities for all kinds of purposes. The motivation of this work is to show that this can
be done, and furthermore that this is worth doing – especially in mobile device devel-
opment where central processing unit (CPU) performance is still a major bottleneck.
Fields of application such as image filtering, video analysis or augmented reality could
greatly benefit from GPGPU on mobile devices, especially when considering increased
camera resolutions which leads to higher computing complexity for the mentioned fields
of application.

1.2. Aims of this Work

As indicated in the previous section, the aims of this thesis are finding ways for faster
computation of DSP problems by using techniques of parallel computing on mobile device
GPUs. The performance impact of this approach is to be examined and compared in
the following fields:

• image processing (linear filters, histograms)

• computer vision (extracting geometric features)

• audio synthesis

An important part of this thesis will be to find out the proper prerequisites for GPGPU
on mobile devices: Which hardware can be used, i.e. which devices with what kinds of
GPU hardware? What are the advantages and disadvantages of these devices in terms
of parallel computing on their GPU? This leads to the next question: What needs to
be expected from the software side? On which kind of platform, i.e. on which mobile
device operating system (OS) is it possible to use GPGPU? What kind of frameworks,
libraries and application programming interfaces (APIs) can be used in the development
process and what are their advantages and disadvantages?

Besides these practical questions, this work also needs to consider the positives and neg-
atives of this approach on mobile devices, including benefits and limitations. How can
a developer handle the issue of portability when dealing with technologies that might
be very hardware-specific and dependent on special APIs? How can one design possible
hardware-independent fallbacks? May the effort put into designing and writing such ap-
plications negate the outcome of possible higher performance?

Furthermore, this thesis tries to postulate about the future and predict what one might
reasonably expect of current trends in GPGPU on mobile devices. Where is this technol-
ogy heading and what kind of developments can be anticipated?
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1.3. Organization of this Thesis

Since many different fields of computer science are mentioned in this thesis, a comprehen-
sive overview of each field’s respective fundamentals cannot be given. Common knowl-
edge about digital image and audio processing is assumed.

In general, the work can be outlined as follows: An introduction about the fundamen-
tals of parallel computing that are important for this thesis is given in chapter 2, since
this topic is still often regarded a specialized subject in computer science. The explana-
tions also cover different machine models that are important in order to understand the
hardware architecture of graphics units. Because this thesis focuses on performance mea-
surements, concepts such as complexity and speedup are discussed in this chapter, too.
Chapter 3 then focusses on parallel computing with GPUs and outlines the state of this
field on mobile devices for the area of DSP. Available parallel programming technologies
for these platforms are introduced and an overview about related research is given. The
main part of this thesis consists of chapter 4, where a study of the different technolo-
gies for GPU computing on mobile devices is conducted. The comparisons are made
using different algorithms of the mentioned DSP fields. Their theoretical background
is explained before the different implementation approaches are discussed. Therefore,
some important DSP fundamentals are given in the beginning of this chapter. Based
upon the results of this evaluation of GPGPU technologies, a practical project is imple-
mented, where parts of an existing application are accelerated by sourcing them out to
the graphics unit. This project shows the potential but also the issues for the practical
application of this technology. To conclude, chapter 6 gives a summary of this work and
outlines future perspectives for GPGPU on mobile devices.
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2. Fundamentals of Parallel Computing

In this chapter the fundamentals of parallel computing are introduced. This theoreti-
cal background is important for designing, analyzing and verifying parallel algorithms.
The introduced models and theories are device-agnostic and not bound to mobile sys-
tems. Special considerations for this group of devices will be made in the next chap-
ter.

First, some common vocabulary will be defined before moving on to the examination of
different machine models and hardware architectures. Some laws for performance theory
in parallel systems will be described as well as fundamental concepts of algorithmic
complexity. After that the focus is set on parallel programming techniques as well as
the involved problems and limits.

2.1. Important Vocabulary and Definitions

For better understanding of the following concepts, it is important to provide some
common vocabulary definitions.

2.1.1. Concurrency and Parallelism

Although often used as synonyms, concurrency and parallelism are not the same. In
fact, parallelism is a subset of concurrency, which in turn is the opposite of the serial
execution model. Parallel execution means that two or more actions can be executed
simultaneously, whereas a concurrent execution allows to run two or more actions in
progress at the same time [Bre09, p. 3]. In practice this means that a program using
two threads on a single-core machine employs concurrency but not parallelism. The
instructions in its threads are executed in an interleaved manner and hence are in progress
at the same time, but two instructions cannot be executed simultaneously on a single-
core machine and hence the application is not parallel.

2.1.2. Workers, Tasks, Data and Dependencies

Algorithms implement a procedure for solving a problem by using tasks that operate
on data in most cases. These tasks are processed by one or several workers, which are
an abstraction of the available processing units in a piece of hardware. In contrast to a
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serial program, concurrent algorithms may execute their instructions in a nondetermin-
istic order. At the same time two kinds of dependencies may exist between tasks in such
algorithms which restrict the running order: Data dependencies and control dependen-
cies. The former describes the problem in which one task may need to work on data
that is generated by another task and therefore needs to wait for its completion or that
memory accesses need to be synchronized in order to maintain memory consistency. The
latter describes a dependency of a task on events, states or other side effects created by
another task [MRR12, p. 39; SW11, p. 4; Bre09, pp. 5,27].

A task implements serial control flow as a sequence of instructions and can detach a
new task (a concurrently running serial control flow) using a fork point. These tasks
can be synchronized again by uniting them at a join point [MRR12, p. 40]. Threads
use the same terminology of “forks” and “joins” but are not to be confused with
tasks. They refer to what is explained as mandatory parallelism in the following sec-
tion.

2.1.3. Mandatory and Optional Parallelism

McCool et al. [MRR12, p. 19] compare mandatory and optional parallelism. These
terms are also referred to as explicit and implicit threading models by Breshears [Bre09,
p. 77]. The former describes a parallel programming model in which the system forces
concurrent (not necessarily parallel) execution of instructions. An example for this is
POSIX threads1, where spawning and destroying of threads is directly specified in the
program. In contrast to that, optional parallelism defines opportunities for parallel
execution. The system itself decides if parallel execution is beneficial under the current
circumstances, taking the number of idle processing units into account, for example.
This approach has strengths in scalability and portability but gives less control to the
software developer. The different parallel programming models and available libraries
will be described in more detail in section 2.4.1.

2.2. Machine Models

A machine model provides the theoretical background for a computer hardware archi-
tecture. It explains how data is organized, transported and processed in such a ma-
chine.

2.2.1. Flynn’s Taxonomy and Related Classifications

Flynn [Fly72] has introduced a classification of computer architecture that is now known
as Flynn’s taxonomy. For parallel computing there are two categories of interest: Single

1See [Jos13] on the POSIX standard and [Bla13] on its pthreads API.
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Instruction, Multiple Data (SIMD) and Multiple Instruction, Multiple Data (MIMD).
The former describes a system that can perform one instruction stream simultaneously
on multiple data elements. This can be implemented as instruction level parallelism or
vector instructions in a single processing core where multiple functional units process
a whole vector of data at once [MRR12, p. 44]. The latter is a system that is capable
of handling separate instruction streams that operate on separate data. This can be
realized with different hardware configurations, including computers in a network that
form a computing cluster or, more important for this thesis, multiple processing cores
in a single computer.

There is a related classification called Single Instruction, Multiple Threads (SIMT) that
forms a subset of SIMD and is used in GPUs. It specializes in executing massively
parallel computations that run hundreds of hardware threads all operating on different
parts of data. However, these threads need to run the same instructions together in
order to achieve the best performance [Zwa10]. This is due to the different hardware
architecture of GPUs compared to CPUs, which will be explained in more detail in the
following section.

2.2.2. General CPU and GPU Architecture

Modern consumer CPUs have made excellent progress in terms of performance and
efficiency, while their fundamental design is still based on the classic Von-Neumann-
architecture of 1945 [Neu45]. This shows how successful this architecture still is for
general-purpose computers. As shown in figure 2.1, a CPU is connected via a data
bus to a memory unit which allows the reading or writing of data. The CPU itself
consists of a control unit and an arithmetic/logic unit (ALU). The former interprets
instructions of a program and controls the communication to and from the ALU which
itself executes these logic and arithmetic instructions. Modern CPUs additionally have
a data cache and typically consist of many ALUs. However, the basic design of Von-
Neumann is laid out for strict sequential running order, which places it in the Single
Instruction, Single Data (SISD) category in Flynn’s classification. This influences the
programming model (see section 2.4.1) of the programming languages that can be used
on these machines. According to Backus [Bac72], this causes problems with program-
ming language design: Besides the “literal [Von Neumann] bottleneck” (which refers to
the data bus) there is the “intellectual bottleneck” that encourages sequential program-
ming.

GPUs have an essentially different hardware architecture. They moved from a hardwired
graphics pipeline with several highly specialized processors to an “unified grid of pro-
cessors, or shaders” with a large array of freely programmable processing units [LH07].
They are designed to perform a massive amount of floating point number calculations
in parallel by executing a large number of threads that operate in groups on “nearby”
memory (see next section) with similar instructions thus minimizing control logic and
long-latency memory accesses. Figure 2.2 shows the architecture of a modern GPU.
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Cache
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Figure 2.1.: Modified Von-Neumann-Architecture [KH12, p. 4].

It consists of several streaming multiprocessors (SMs) that are together organized in a
building block. Each SM has multiple streaming processors (SPs) connected to a shared
instruction cache and control logic unit. All SMs have high-bandwidth access to the
video memory of the GPU, with a capacity of 128 MB to 8 GB on modern video cards
[KH12, p. 5–9].

The high level of parallelism leads to an impressive raw computational power on modern
GPUs. Another big difference compared to CPUs is that GPU design philosophy is
aimed at high throughput rate for graphics rendering while CPU design prioritizes low
latency, as Owens et al. [Owe+08] point out. A modern CPU operates in a scale of
nanoseconds, but the human visual system works only in a magnitude of milliseconds.
Because of this, GPUs are designed to complete the processing of a large amount of
data in a comparatively long time, whereas CPUs process fewer data in very short time
spans. This is one of the reasons why it is more efficient to let a GPU process one
big chunk of data at one time instead of feeding it several times with smaller data
chunks.
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Figure 2.2.: GPU architecture schema [LH07; KH12, p. 9].

2.2.3. Memory Hierarchies and Data Locality

For efficient computation data locality is crucial, which is the “reuse of data from nearby
locations in time or space” [MRR12, p. 50]. For this reason most computer architectures
implement a multi-level memory hierarchy as described by Van Der Pas [Van02]: The
closest memory units are registers that store a value on which a machine instruction
directly operates. After that come data and instruction caches which are organized in
several levels, where higher levels are slower to access but are larger than lower cache
levels. Registers and caches are integrated into processor cores and therefore provide
very fast access. The next step on the hierarchy is main memory, which is connected via
a data bus and therefore is much slower to access but provides usually several gigabytes
of memory. The next steps include disk and tertiary storage that provide long term mass
storage, but are not important for this thesis.

Two important measures for memory performance are bandwidth and latency. The
former describes the rate at which a certain amount of data can be transferred, whereas
the latter is the amount of time until a memory transfer request is fulfilled. Both are
strictly tied to the memory hierarchy level. The closer the data resides in time and
space to the processing unit, the higher the bandwidth and lower the latency. Therefore,
data locality is a “key feature for performance” according to McCool et al. [MRR12,
pp. 46,50].
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2.3. Performance and Complexity

This section covers fundamental measures and laws of performance theory and provides
a short introduction to computational complexity for parallel algorithms. Although
performance can (and should) also be measured empirically, the analytic models that
will be introduced allow deeper insight about how performance scales under different
circumstances, what improvements are to be expected from parallelism and where the
limits to these improvements lie.

2.3.1. Important Measures for Performance

Culler et al. [CSG98, p. 59] give some important important performance characteristics
for parallel computation: Latency has already been introduced in the context of memory
(see 2.2.3). In performance theory it means the time a task needs to complete. Through-
put can also be used in this context and means the rate at which a certain amount of
tasks are completed. This measurement is related to the term bandwidth, which is used
for memory transfer rates [MRR12, p. 55].

Speedup Sp is defined in a number of publications ([DAS12, p. 19; Bhu09, p. 20; MRR12,
p. 56]) as the fundamental indicator for comparing the performance of a program on a
multiprocessor machine to a reference (single-processor) machine. It is defined as the
latency or execution time T1 of the program using one worker (one processing unit)
divided by the latency TP for using P workers:

Sp =
T1
TP

. (2.1)

Efficiency is related to this since it is defined as speedup divided by the number of
workers (Sp/P ). This results in a measurement for the “return on hardware invest-
ment” [MRR12, p. 56]. When a program runs P times faster with P workers, the
equation would yield 1 (or 100% efficiency) which is called linear speedup. This is the
ideal case that can usually not be achieved since every parallelization also introduces
overhead for task management and synchronization. Theoretically a value over 1 is also
valid and would yield superlinear speedup, but this is only possible if the parallel al-
gorithm itself is more efficient than the serial algorithm due to better cache memory
usage or better overall algorithm design. However, in practice sublinear speedup is to be
expected.

2.3.2. Amdahl’s Law

Amdahl [Amd67] split the overall execution time T1 into two parts: Time s for non-
parallelizable serial work and time p for parallelizable work. These are summed and
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inserted into the definition of speedup and result in Amdahl’s Law for linear or sublinear
speedup with P as the number of processors:

Sp ≤
s+ p

s+ p/P
. (2.2)

When the total time is defined as s+p = 1, this formula gets simpler:

Sp ≤
1

s+ p/P
. (2.3)

Now if one considers having an infinite number of processors (such that P →∞), one can
see that the maximum possible speedup is 1/s. So the important implication of this law
is that it limits the maximum possible speedup to the fraction of non-parallelizable work.
Even with an infinite number of workers (processor cores), the speedup cannot exceed
the limit set by the time for serial work. This is an important limitation, because most
algorithms can only be partly parallelized (as explained in section 2.4.3) and it depends
on the amount of remaining serial work plus parallelization (work distribution) overhead.
This decides whether a satisfying speedup can be achieved.

2.3.3. Gustafson-Barsis’ Law

Gustafson [Gus88] revised Amdahl’s Law noting that the problem size also grows with
increasing computational power: “[I]n practice, the problem size scales with the number
of processors”. By adding more workers, the parallelizable workload is distributed better
and thereby each worker can do more parallelizable work in the same time, whereas the
serial fraction of the work grows smaller or stays fixed. This results in a better speedup.
Gustafson calls this scaled speedup Ssc and provides the following formula2 giving credit
to E. Barsis:

Ssc = P + (1− P ) ∗ s. (2.4)

Gustafson-Barsis’ Law takes scalability into account, which is very important. However,
the difference to Amdahl’s Law is the point of view as noted in [MRR12, p. 62]: “The
difference lies in whether you want to make a program run faster with the same workload
or run in the same time with a larger workload.”

2Gustafson’s paper gives the formula with an equal sign instead of a less-or-equal sign, therefore pro-
viding an upper bound for ideal parallism without overhead (linear speedup) in contrast to McCool
et al. [MRR12].
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2.3.4. Computational Complexity for Parallel Algorithms

Computational complexities describe the requirements of an algorithm in terms of time
(execution period) and space (amount of memory) subject to the problem size n. This is
usually done as asymptotic complexity analysis that yields an upper and/or lower bound
for time or space complexity of an algorithm. Roosta [Roo00, p. 233] emphasizes that for
parallel algorithms the time complexity is harder to determine than for serial algorithms,
where it can essentially be calculated by counting the number of operations and their de-
pendency from the problem size. So for serial algorithms the complexity can be described
as a function f(n), whereas for parallel algorithms there is an additional dependency on
the number of processors P which yields a function f(n, P ).

For serial algorithms the complexity of an algorithm is usually expressed in Big O no-
tation resulting in an upper bound. For example, to find the index i of a number q in
a vector that contains n unique unordered numbers, a possible algorithm has the time
complexity T1(n) = O(n). This upper bound means that the worst case scenario for this
algorithm is to perform n operations for a vector of size n. McCool et al. [MRR12, p. 66]
notes that Big Theta notation (referring to a paper by Knuth [Knu76]) is more practical
because it provides a lower bound “Ω” (the one for parallel computation) and an upper
bound “O” (the one for serial computation). To determine the complexity for parallel
computation it is necessary to take into account the number of processors as described in
the previous paragraph. For the former example of searching in a vector of unique num-
bers, we can assume a parallel algorithm that divides the vector into n/P (for n ≥ P )
parts and distributes them on P processors in a tree-like manner. Roosta [Roo00, p. 235]
describes this as two phases: First, the “activation steps” for distributing the work, and
then the parallel computation for each processor. In the provided example log2P activa-
tion steps are needed (this equals the tree height) and each processor works in a vector
part of n/P . This results in an asymptotic complexity TP (n) = Θ(n/P + log2P ) for the
given example.

Computational complexities for parallel algorithms depend on the parallel programming
model, and the two phases that Roosta [Roo00, p. 235] describes may not be valid for
all of them. But what always needs to be considered is the number of processors and the
complexity of distributing the work or collecting results of the parallel computations (e.g.
summing up values of all the processors’ partial results). In practice, it is also important
to note that some operations are considerably slower than others, which might be the
result of the underlying hardware architecture.
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2.4. Parallel Programming

2.4.1. Parallel Programming Models

Maggs et al. [MMT95] give a short definition for a programming model : According
to them, it defines the fundamental rules or relationships of an abstract programming
vocabulary, which are applied in a number of programming languages. As such, it is an
abstraction layer above a model of computation which is implemented at the hardware
level (as described in section 2.2.2). Bhujade [Bhu09, p. 31] notes that programming
models are not tied to a certain kind of hardware, but when the programming model does
not fit the hardware specifications, performance may suffer.

Since most computers are still based on the model described by Neumann [Neu45], most
programming languages in the serial computing domain are also tied to this model. For
parallel computing, the programming models differ stronger since they are optimized for
different parallel computer architectures. As already mentioned, a programming model
should fit to its underlying hardware architecture or the performance will suffer. Such
models that either support optional or mandatory parallelism (see section 2.1.3) can be
further divided into the following different programming models described by Bhujade
[Bhu09, pp. 31-34]:

Shared Memory is a programming model that allows tasks that run on a multiprocessor
system to have direct access to a globally shared memory for asynchronous reading
and writing. The program development is simpler than with other models but
CPU-memory connection latency and cache coherence are crucial [HHG99, p. 419].
Parallelism can be either mandatory (via inter-process communication (IPC)) or
optional (for example in Intel Threading Building Blocks (TBB) or Cilk Plus).

Message Passing supports optional parallelism and describes a model where tasks can
be distributed on the processing cores of one or several machines (e.g. via a com-
puter network). They communicate by sending and receiving messages. An exam-
ple is Message Passing Interface (MPI).

Data Parallelism describes a model where tasks work collectively on a large data set by
dividing this set into smaller parts for each worker. It is important to note that
each task performs the same operations on a different part of the data set. This
programming model provides optional parallelism since data partitioning and hence
parallelism is dynamically determined depending on problem size and the avail-
able number of workers [MRR12, p. 24]. Examples include the already mentioned
TBB, Cilk Plus and a number of programming languages and libraries designed
for GPGPU, such as OpenCL or CUDA.

Task Parallelism is usually related to the above data parallel model, but both are dis-
tinct. In a task parallel model the focus for parallelism is not set on the data,
but on the particular tasks that perform operations on this data. Such tasks are
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decomposed so that they can run concurrently. Each task might involve a different
work-load, so distributing them properly is crucial [MGM11, p. 9]. An example
might be a task-graph consisting of connected and interdependent tasks. With
respect to their dependencies, such tasks could be parallelized, for example with
OpenCL [MGM11, p. 28].

Threads implement mandatory parallelism. Each task is a thread that runs concurrently
(not necessarily in parallel) with other threads. The number of threads might by
determined dynamically depending on the problem size and number of workers but
they must be explicitly created and destroyed. The scheduling of these threads is
handled automatically by the OS. An example is the already mentioned POSIX
pthreads API.

As noted, task and data parallelism are sometimes hard to distinguish and because of this
McCool et al. [MRR12, p. 41] call it a “troublesome term.” They favor the terminology of
regular and irregular parallelism. In the former type tasks behave similar and therefore
have predictable dependencies. The later type is the opposite: they may behave in a
different way depending on the input data, and therefore may introduce unpredictable
dependencies.

Some of the above models are general enough to be used as parallel programming models
for CPUs or GPUs. However, the data parallel model suites GPUs best as will be shown
in section 3.1.2 in the next chapter.

2.4.2. Decomposition Techniques for Parallel Programming

Task Decomposition

Most algorithms are at first devised for sequential processing in order to solve a given
problem. To parallelize such an algorithm, it must at first be decomposed. There are
several techniques for this task. A very common approach is called task decomposition
or divide-and-conquer strategy [Bre09, pp. 22-32; Gas+13, p. 3], which is connected to
task parallelism as described in the previous section. By applying this strategy, a prob-
lem is broken down into a series of sub-problems that are suited for parallel processing,
meaning that little or no dependencies exist between these sub-tasks. So the key for task
decomposition is to identify independent sub-tasks in an algorithm in order to parallelize
them. This strategy fits best for algorithms whose run-time is very dependent on the
input data (not only the problem size) and which have various dynamic side effects. Ex-
amples might be a parallel search algorithm, which terminates dynamically depending on
when the search term was found [Bre09, p. 23], or a parallel shortest-path algorithm that
operates on graph data structures [MGM11, pp. 411-416].

When decomposing a serial algorithm into independent sub-tasks, it is very important
to keep a good balance between task granularity and task management overhead [Bre09,
25f.]. It is of course important to divide big tasks into smaller independent ones in
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order to achieve good scalability, because these tasks can be efficiently distributed on
the available processing units. However, if these tasks are too fine-grained, meaning
that the amount of work in each task is very small in relation to the overhead that
is produced by managing this large number of tasks, the overall performance may suf-
fer.

Having completely independent sub-tasks in a parallel algorithm is often not the case,
since many algorithms involve at least one of the already described dependencies (see
section 2.1.2). An example might be a parallel algorithm that needs to increment a
value in a field of a global array. If it is possible that several parallel tasks might
want to increment the same field simultaneously (which is for example the case in a
Hough voting map as described in section 4.3.3), a data dependency is given and the
parallel program must ensure synchronized memory access in order to maintain data
consistency.

Data Decomposition

Data decomposition, also known as scatter-gather strategy, applies data parallelism by
dividing the input data into subsets (data chunks) which are distributed on the parallel
processing resources (scattering phase) [Bre09, p. 32; Gas+13, p. 3]. After processing,
the partial results are collected and form the final result (gathering phase). Many types of
data structures can easily be used for this strategy, such as arrays, matrices or lists. Many
image processing tasks, such as linear filters, can be implemented as data parallel algo-
rithms since they work independently on single pixel values.

As with task decomposition, two factors are important to keep in mind: First, order and
data dependencies should be considered. In data parallel algorithms there can also be
situations when tasks have to be ordered or memory accesses need to be synchronized.
An example is given by Breshears [Bre09, pp. 38-41] who designs a parallel algorithm for
the well-known “Conway’s Game of Life.” Because in each game round every cell has
to check the status of neighboring cells in the “universe” matrix and then has to update
its own status, there is a data dependency between individual cells (which also exists in
the traditional serial algorithm). Because of this, two matrices have to be used in order
to read the status from one matrix containing the previous game round and write the
result to another matrix for the new round.

The other important factor is again granularity, which is in this case related to the
amount of data in each chunk. Because decomposing a data set is often easier than
decomposing tasks at run-time, this strategy allows dynamic reaction to the amount of
available processing resources. This means that the amount of work can be efficiently
distributed to the processing units at run-time in order to achieve minimum overhead
and maximum resource utilization.
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2.4.3. Problems and Limits of Parallel Computing

There are many cases where it is either not possible to decompose a serial algorithm
into parallel sub-tasks or not beneficial to do so [Bre09, pp. 43-47]. Algorithms that are
inherently not suited for parallel processing are the ones that employ a state machine.
Since there can be only one state at a time, it excludes the possibility of concurrent
operations that might produce different states at the same time. In some cases it is
possible to prevent this by mutual exclusion and synchronization operations, but this
can lead to parallel tasks that eventually execute serially.

Another complicated case is recurrence relations, which are present when a calculation
result within an iteration of a loop is dependent on the result of the previous iteration.
An example are loops that refine a calculation result until a convergence value is reached,
as for instance the update and refinement step in the Linde-Buzo-Gray (LBG) algorithm
[LBG80]. However, it is still possible to parallelize such algorithms. Often this means to
apply task decomposition one level above (i.e. calculating the centroids for each cluster
in parallel in the mentioned LBG algorithm).

All in all, it must be kept in mind that parallel computing is not a universal cure to
increase the performance of every program. This is especially the case when special-
ized hardware such as GPUs are used, as Luebke and Humphreys [LH07] noted: ”The
GPU’s specialized architecture isn’t well suited to every algorithm. Many applications
are inherently serial and are characterized by incoherent and unpredictable memory
access.”
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3. Parallel Computing on Mobile Device
GPUs for DSP

In this chapter the general concepts of the previous chapter are applied to the special
case of parallel computing on a mobile device GPU. Its special hardware characteristics
and their implications for parallel programming on such a device are examined. The
question of which GPGPU technologies are supported is settled, as well as what their
advantages and disadvantages are. Prior research by others on this topic will be presented
and analyzed. In the last section some problems in the broad field of DSP will be
selected for further investigation in the context of parallel programming on mobile device
GPUs.

3.1. GPU Architecture on Mobile Devices

GPUs on mobile devices must meet special requirements since both power consumption
and chip size are crucial for a battery powered handheld device. Still, as demands for
elaborate graphics in user interfaces and games have grown, they must provide excellent
performance. Since mobile devices are a growing market [Kur13], big efforts have been
put into the improvement of all hardware components of these devices, including the
low-power GPUs. For example, the first generation of Apple’s iPhone had a PowerVR
MBX Lite supporting OpenGL ES 1.1 with one GPU core running at 103 MHz, while
the iPhone 5 came out about five years later with a PowerVR SGX543MP3 with three
GPU cores at 266 MHz and support for OpenGL ES 3.0 [Tal13; Shi12]. So, in the past
few years mobile device GPUs have made tremendous progress in terms of performance
and API support, but still the architectural differences in relation to desktop GPUs
remain.

3.1.1. Architectural Differences between Desktop and Mobile GPUs

On desktop and laptop computers, a GPU is often attached to the system as a dedicated
graphics card via PCI-e bus. Another possibility is to integrate the GPU on the moth-
erboard or on the CPU die (integrated CPU/GPU system). The differences between
mobile and desktop systems in terms of hardware architecture come from the need to
save space and energy. The strongest distinction is probably the system on a chip (SoC)
design, which integrates all processing, data bus and memory components of a computer
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on one chip, not just the CPU and graphics unit. Regarding the GPU design for mobile
devices, Akenine-Möller and Ström [AS08] provide an overview describing some of the
main distinctions compared to desktop GPUs:

Memory access: As already explained, desktop computer systems usually come with a
dedicated graphics card. This also means that data needs to be transferred via
some kind of data bus from the main (or: “host”) system to the GPU. Although
this design provides a dedicated data bus for the graphics unit and is therefore
very fast, it is not practical for mobile devices for reasons already explained. The
SoC design provides a more compact layout, which saves space. This comes with a
price – the GPU needs to share the system bus with all other components to access
the main memory, so the memory bandwidth for it is lower as also pointed out by
Cheng and Wang [CW11]. Furthermore, memory accesses are also described as
“very expensive in terms of energy” [AS08] and therefore should be minimized.

Tiling: Many GPUs implement a tiling architecture that splits the rendering area into
small tiles that fit into the cache memory of the GPU’s processing units. This
prevents expensive off-chip memory accesses [AS08].

API and data type limitations: Mobile device GPUs only support the ES subset of
OpenGL which will be explained in more detail in section 3.2.3. Until version 1.1
only a fixed rendering pipeline was supported. Since version 2.0 it has been replaced
by a programmable pipeline. Some earlier mobile device GPUs only supported
fixed-point data types (with OpenGL ES 1.x Common-Lite Profile [BML08, 6f.]),
but all OpenGL ES 2.0 capable devices must support floating-point types [ML10,
6f.].

3.1.2. Implications for Parallel Programming

Section 2.2.2 has introduced the hardware architecture of modern GPUs, which is essen-
tially different from the architecture of CPUs. A parallel programming model for GPUs
must reflect these differences to achieve the best performance on such a system. Due to
the massive number of processing units that should run similar instructions on organized
data sets to make best use of the instruction and data caches, a data parallel program-
ming model with regular parallelism is highly favored. This programming model has
already been introduced in section 2.4.1 and provides best scalability since the level of
parallelism grows dynamically with increasing problem size and/or increasing number of
workers. This enables programs to run faster on future hardware with more processing
units [MRR12, p. 24].

The previously mentioned features of a GPU’s hardware architecture also describe the
separate memory spaces for the GPU and CPU. Before a GPU can operate on data, it
must be transferred from the host memory to the graphics unit memory. After the calcu-
lations there are done, results may be written back to the host memory again. Although
separate memory spaces for GPU and CPU are not the case for SoC environments often
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used in mobile devices, the data must still travel to or from the GPU via a data bus,
which can quickly become a bottleneck. So careful design of algorithms to use the least
possible amount of memory accesses is crucial. The problem of memory transfers can
directly cause parallel algorithms to run slower than their serial counterparts, no matter
how well they are optimized.

3.2. Available Parallel Programming Models, APIs and
Technologies

Since embedded low-power GPUs are primarily designed for high-performance 2D and
3D graphics rendering, GPGPU is often not natively supported via an API. This was also
the case for the beginnings of GPU computing on desktop computers. In 2008, Owens
et al. [Owe+08] wrote that “[u]ntil recently, GPU computing could best be described
as an academic exercise”. But this has changed dramatically as GPGPU technology
became easier to use for programmers. Owens et al. [Owe+08] show that GPGPU is
now included in consumer applications such as games that use the Havoc FX 1 physics
engine.

In the following sections, APIs and technologies supported on mobile devices are intro-
duced, although some of them are only available on a small set of models. Nevertheless,
the author of this thesis is sure that GPGPU will become as popular as popular for
mobile devices as it is in the desktop world in the future and one or more of these
technologies will eventually prevail. In all of the following APIs the preferred parallel
programming model for GPU computing (the data parallel model) is directly supported
or can be emulated.

3.2.1. OpenCL

OpenCL is a framework for parallel computing on heterogenous systems. Such systems
consist of multiple processing units, with each including potentially different specifica-
tions and properties. An example can be a computer with a multicore CPU, two dedi-
cated GPUs and a DSP accelerator. OpenCL provides a uniform access to the computing
capacities of all these different processing units in a computer that support the OpenCL
industry standard defined by the Khronos Group.2 This allows software developers to
implement parallel algorithms on a wide range of devices.

1See product website http://www.havok.com/products/physics.
2See http://www.khronos.org/opencl/ for OpenCL specifications and documentation.
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Conceptional Foundations and Supported Programming Models

To support such a tremendous variety of hardware, the authors of the framework chose
a low-level approach: “OpenCL delivers high levels of portability by exposing the hard-
ware, not by hiding it behind elegant abstractions.” [MGM11, p. 4]. This means that
the implementation itself has to be aware about the capabilities of the hardware it
is running on, and with this information it has to decide about the optimal distribu-
tion of work. Hence, OpenCL is “counter to the trend toward increasing abstraction”.
The conceptional foundation of OpenCL is defined by four models [MGM11, pp. 11-
29]:

Platform model: Describes the heterogenous system (the main system or OpenCL host)
and the capabilities of each computing device, which is called an OpenCL device.
Each device consists of one or more computing units (e.g. the cores of a multi-core
CPU), which in turn have one or more processing elements (PEs) (e.g. SIMD
vector units of a CPU core).

Execution model: In OpenCL, an application includes a host program that runs on the
main system and one or more kernels that are executed on the OpenCL devices.
These kernels are usually written in OpenCL C and implement the computations
that are supposed to run on the parallel PEs of one or more OpenCL devices. Just
like OpenGL shaders, they are compiled on-the-fly for the respective hardware.
The distribution of work for these kernels is specified with an hierarchical model
consisting of work-items and work-groups in an NDRange (see figure 3.1). Work-
items are single instances of a kernel and operate on each input data item. They
are grouped together in work-groups that share group-local memory (see next
description). Kernel programs have access to memory via memory objects. The
whole set of devices, kernels and memory objects is called an OpenCL context.

Memory model: OpenCL defines a hierarchical model of memory regions, shown in
figure 3.2. It is divided into host memory and levels of device memory, each with
its own scope. Host memory can be copied or mapped to device memory (global
and constant (read-only) memory) and is available for all work-groups with their
respective work-items. Inside such a group, work-items can access (group-)local
memory. Private memory is only accessible by its work-item. This hierarchy can
be mapped very efficiently to memory and cache models of different hardware
resources. It also guarantees consistency on each of these levels: Local and global
memory is consistent within the items of a work-group on synchronization points
(barriers). However, it is important to note that consistency for global memory
cannot be enforced for work-items in different work-groups.

Programming models: Two parallel programming models are supported by OpenCL
1.1: Data and task parallelism. Both have already been introduced in section
2.4.1.
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Figure 3.1.: Kernel execution model with two-dimensional NDRange index space. Here
each work-item has a global index Gx, Gy and belongs to a work-group
Wx,Wy. As member of a work-group, a work-item also has a local index
Lx, Ly. In the example, the highlighted work-item has the indices G =
(6, 5);W = (1, 1), L = (2, 1) [MGM11, p. 16]. The indices start with zero.

Supported Devices

The OpenCL standard defines an Embedded Profile (EP) for handheld devices that
relaxes some of the requirements in the standard for such systems. OpenCL officially
supports Android devices since version 2.0 [Gro13]. However, the real situation regarding
OpenCL support on smartphones is more complicated. The Android devices Nexus 4,
Nexus 10 and Sony Xperia Z have been found to come with OpenCL EP 1.1 drivers
[Pic13; Sca13; com13]. Unfortunately, support is only available with Android version
4.2 and has been removed with version 4.3 in favor of RenderScript [Gar13]. Although
Google received complaints from many developers about this step, future support of
OpenCL on Android stays unclear at the time of writing since its execution model is
believed to be too hardware-centric by Google officials. Hindriksen [Hin13] gives a good
overview about the discussion.

Although OpenCL itself is backed by Apple, iOS devices do not have official support for
the framework so far. But apparently there is a way to interact with OpenCL via private
API calls as shown by Yang [Yan13] on iOS devices.

For Windows Phone, no reports about OpenCL support could be found.
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3.2.2. RenderScript

RenderScript (RS) was originally introduced by Google with Android 3.0 for high per-
formance computations and 3D rendering. Since version 4.1 the 3D rendering API is
declared deprecated and the focus is now solely on heterogenous high speed computation
[Goo].

Only recently was GPU computing support added to RS with Android 4.2. There-
fore most articles about this technology make performance comparisons only between
Android Java software development kit (SDK), native development kit (NDK) and RS
running on a mobile multicore CPU [QZL12; AAB12; Kem+13]. However, the article by
Sams [Sam13] suggests a strong performance increase for RS computations running on a
heterogenous CPU/GPU environment exemplified by the Nexus 10.
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Conceptional Foundations and Supported Programming Models

The above article also points out the fundamental difference to OpenCL’s approach
towards hardware abstraction. While OpenCL exposes low-level hardware features and
expects the developer to make intelligent decisions about which algorithms are to run on
which hardware component, for RS “[n]o effort is required on an app developer’s part to
enable this [GPU] acceleration.” Here, the developer lays the decision about hardware
responsibility in the hands of an (undocumented) RenderScript compiler/analysis tool in
conjunction with GPU vendor driver specifications. This has pros and cons, such as easier
and faster development while assuring portability on the one side, but nontransparent
work distribution on the other side.

Regarding the execution model, RS follows the kernel concept also used by OpenCL and
CUDA. Such kernels include the high performance compute tasks and are written in a
C99-like language. Their lifetime, execution and host memory access is controlled in the
Android application side via a Java API. As already mentioned, the work distribution
cannot be controlled by the developer and is instead performed automatically by RS un-
der unknown assumptions. In the application build process, all RS kernels are compiled
to device-independent bitcode, which in turn is compiled on-the-fly to native code on the
device [Gui12, p. 233]. This model similar to the Java virtual machine (VM) assures
portability (at least between Android devices), but in contrast to Java on Android it
does not compile to native code during execution (just-in-time) but only once at startup
(ahead-of-time), which delivers better performance.

The programming models of RS can also be compared to OpenCL or CUDA. Both
data and task parallelism can be implemented, but it remains unclear if the latter also
utilizes the GPU. In respect to the described execution model, one cannot surely say if
the RS compiler can automatically generate efficient native code for GPUs for anything
besides data parallel algorithms, since task parallelism usually includes a large amount of
conditionally executed code and unpredictable memory accesses. For highly data parallel
algorithms Filterscript was introduced with Android 4.2, which is a more restrictive
subset of RS suited for GPUs and aimed at image processing algorithms like convolutions
[Voi13].

OpenCL gives full freedom to the developer, potentially burdening her or him with
hardware details. RS lifts this burden but introduces non-transparency regarding GPU
utilization and load-balancing. One of the goals of this work is to find out which of these
two approaches is best under what kind of circumstances.

Supported Devices

Since RS is an Android API, only Android devices are supported. It requires at least OS
version 3.0 and for GPU computing support version 4.2 or above is needed. Furthermore,
the GPU vendor must support this technology in its drivers. Unfortunately there is
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currently no list of supported Android devices for RS computing using the GPU, but
Nexus 4, 7 and 10, as well as Motorola Xoom are reported to work. GPU utilization
decisions stay obscure with RS and only very little documentation is given on the topic
at the time of writing.

3.2.3. OpenGL ES

OpenGL for Embedded Systems (ES) is an API specification for hardware-accelerated
graphics rendering on handheld systems such as mobile devices. There are several ver-
sions that are widely supported on mobile devices: Versions 1.0 and 1.1 implement the
fixed rendering pipeline of the original OpenGL 1.x API but have an overall stripped
down, lightweight interface. Since the rendering pipeline is not programmable, these
versions are of no use for serious GPGPU programming. OpenGL ES 2.0 changed this
and introduced a programmable pipeline via shaders – a concept drawn from the desk-
top OpenGL 2.0 specification [MGS09, p. 3]. The programmability of the pipeline was
further extended with the introduction of OpenGL 3.0.

Conceptional Foundations and Supported Programming Models

Shaders determine the functions of certain stages in the graphics pipeline and can be
written in OpenGL Shading Language (GLSL) which employs a C-like syntax. Just
like OpenCL kernel programs, these shaders are built at run-time. The OpenGL ES
2.0 rendering pipeline can be seen in figure 3.3 where the two programmable shaders, at
vertex and fragment stage, are highlighted. The former allows per-vertex operations such
as transformations, whereas the latter is used for per-fragment operations (i.e. operations
on each pixel) that produce the final pixel colors for the framebuffer. A framebuffer is
the final rendering destination in OpenGL and is usually displayed on screen, but it is
also possible to specify a framebuffer object (FBO) as rendering target. Such an FBO
can then for example be used for subsequent rendering passes or for copying back its
contents to the main memory. For a detailed description of the OpenGL ES 2.0 rendering
pipeline see dedicated literature such as [MGS09].

OpenGL as such does not directly support GPGPU computation or parallel program-
ming models in the stricter sense, but it was found that some of its features for graphics
rendering can be exploited for GPU-accelerated, data-parallel calculations. Göddeke
[Göd06] provides four main concepts to turn the OpenGL graphics rendering pipeline into
a GPU-based accelerator for general purpose calculations:

Arrays as textures: Textures can be used to pass data to the GPU. The most obvious
and directly supported use is to pass image data as textures for image processing.
But it is also possible to pass arbitrary data as long as it complies with the sup-
ported image formats of the GPU. The API defines a function glTexImage2D for
copying (image) data to the GPU to be used as a texture. To read back the result
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Figure 3.3.: OpenGL ES 2.0 render pipeline [MGS09, p. 4].

after rendering, glReadPixels can be used to transfer the framebuffer output to
the main memory.

Kernels as shaders: OpenGL shaders implement the operations that are performed on
the vertex and texture data. They are written in GLSL and are compiled dur-
ing run-time. As with OpenGL ES 2.0 two main approaches can be used (and
combined). Data can be passed in as vertex buffer being processed in the vertex
shader, and as texture being processed in the fragment shader (more common) or
vertex shader (less common). With this, data-parallel operations defined in the
respective shaders can be performed on the input data.

Computing is drawing: For the calculations to be executed, an output image needs
to be rendered by OpenGL. This is done just as with usual graphics rendering,
only that off-screen rendering into a framebuffer object might be performed. In
many cases it is sufficient to specify a simple geometry for a quad that covers the
whole display area on which the data will be rendered as texture. To specify the
dimensions of the generated output, glViewport is used. For example, in image
processing, the viewport dimensions can be set to the resolution of the desired
output image – OpenGL scales the rendered image on the fly. Another example
might be calculating the histogram of a grayscale image. Here a viewport of 256x1
pixels can be set where each pixel in width represents a histogram bin.
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Feedback: Often, more complex computations require multiple rendering passes, which
means that several different rendering passes are chained together so that the
output of one pass is the input of another. An example might be low-pass filtering
with a Gauss kernel in the first pass and thresholding in a subsequent rendering
pass. With FBOs this can be easily achieved since one rendering pass can use the
generated output “texture” as its input “texture”.

Implementing this concept results in a program flow depicted in figure 3.4. Using multiple
rendering passes as shown in the schema is of course optional but is usually required.
Often, images need to be rotated before being processed in the shader. This can easily
be achieved by setting the proper texture coordinates.

Copy input data as texture to GPU

For each render pass:

Set input texture
input data or previous render pass result

Set texture coordinates
region of interest or whole input image

Set viewport
defines output image size

Bind FBO
defines the output destination

Render
performs the operations in the shaders

Bind shader program
defines the rendering operations

Copy FBO contents as output data to 
main memory

Cleanup
unbind FBO and shader program

Set geometry
usually two triangles defining a quad

Figure 3.4.: Basic process sequence of a GPGPU program using OpenGL.

Limitations

There are several limitations for GPU computing with OpenGL in general and with the
ES 2.0 variant in particular. While advanced versions of desktop OpenGL (version 4.4
and above) have compute shaders for arbitrary computations that can be divided into
work-groups, no OpenGL ES version supports any GPGPU functions out of the box at
the time of writing. Some of these functions can be simulated. For example, multiple
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rendering passes have practically the same effect as memory barriers. Others, like work
distribution or shared memory for work-groups, cannot be replicated. Whilst geometry
shaders could be exploited for some GPU computing tasks with desktop OpenGL (see
[Dia07]), they are not available in OpenGL ES. With vertex and fragment shaders being
the only programmable pipeline stages, only limited data-parallel algorithms can be
implemented efficiently. Another issue is that only textures can be handled as input
data, which means that the data to be processed must conform to a certain image
format or must otherwise be converted, which introduces additional overhead. Because
the supported image formats for FBOs are very limited in OpenGL ES 2.0, it is hard
to process arbitrary (non-image) data. And even image data can sometimes not be as
efficiently handled as it could be. For instance, the GL LUMINANCE format for single-
channel grayscale images is not supported for FBOs (as found out in experiments), so
shaders must always operate on four-channel color data even if this is not necessary.
This is not such a big problem for the rendering performance, but it is problematic for
the image data transfer times when FBO contents need to be copied back to the main
memory. Another point that adds some overhead is the FBO rendering itself and copying
vertex buffer data to the GPU, which is necessary because the textures must be rendered
to some primitive at the end. Although very little data is copied, it nevertheless adds
additional instructions, that OpenCL or RS do not require.

One should keep in mind that OpenGL is designed for rendering 2D and 3D graphics,
so exploiting it for general-purpose computations is a rather daring interpretation of its
specification and features. The techniques described by Göddeke [Göd06] can be seen as
workarounds that originate from a time prior to GPGPU technologies such as OpenCL,
CUDA or compute shaders. However, since such technologies are only widespread on
desktop or server systems, OpenGL-based GPU computing stays a viable solution for
portable mobile applications.

Supported Devices

OpenGL ES is the most widespread graphics API for mobile devices, because at least
version 1.1 is available on all Android and iOS devices. Apple states that version 2.0
is available on all iOS devices since the iPhone 3GS and version 3.0 is supported by
all devices with an Apple A7 GPU (iPhone 5s, iPad Air, iPad Mini Retina) [App13].
Google’s device dashboard [Goo14] shows a figure displaying a large majority (93.5%) of
OpenGL ES 2.0 devices. Version 3.0 is supported by 6.4% of all Android devices, whereas
only 0.1% support solely version 1.1. Mobile operating systems added OpenGL ES 3.0
support during 2013 (Android 4.3 and iOS 7). Summing this up, OpenGL ES 2.0 is the
most widely used technology that can be exploited for general-purpose GPU computing
on mobile devices, at least within some limitations. Since RenderScript can only be used
on Android systems and OpenCL is hardly supported at all, OpenGL ES 2.0 is the only
portable option for GPGPU at this point in time.
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3.2.4. Other Parallel Programming Technologies

There are many other parallel programming technologies and APIs, but none of them has
widespread support for GPU computing on mobile devices. CUDA (Compute Unified De-
vice Architecture) is the original GPGPU platform developed by NVIDIA. Although it is
available on mobile development platforms [Har13], it has no widespread support on mo-
bile device operating systems, since it is bound to NVIDIA GPUs like Tegra. Microsoft’s
OpenCL competitor DirectCompute does not target mobile devices but GPGPU could
be emulated on Windows Phones using Direct3D shaders.

3.3. Related Work about GPGPU on Mobile Devices

A lot of research has been done in the field of GPU computing on stationary computers.
[Owe+05; Owe+08; ND10] give a good overview of recent developments. Research about
the GPGPU capabilities of mobile devices has just begun, but some interesting reports
and case studies have already been published on this topic. Many authors tried to utilize
the GPU for image processing or computer vision tasks, but not all of them reported an
increase in performance. In this section an overview of articles on the topic is given and
their results are compared.

3.3.1. Selected Works

The first publications on the topic appeared in 2009. Bordallo López et al. [Bor+09]
used the GPU of a Nokia N95 mobile phone to speed up the image warping and inter-
polation processes in a “document panorama builder” application. The user captures
a video while moving the mobile phone camera over a document and the program will
select several still images that form a mosaic of the complete document. The suggested
algorithm uses scale-invariant feature transform (SIFT)3 for feature extraction of the
selected frames for later stitching. To correct varying orientations and letter sizes due to
the changing viewing angle and distance, each frame is warped and interpolated. Bor-
dallo López et al. [Bor+09] at first suggested to utilize the GPU for SIFT, but report that
the fixed rendering pipeline of OpenGL ES 1.1 is not flexible enough for this task. There-
fore only the warping and interpolation is done on the GPU, resulting in an “about four
times” faster computation compared to the implementation on the CPU. The authors
also consider that the parallel programming model of OpenCL and CUDA would be bene-
ficial for their use case. However, since that model was not supported on their device, the
results are based on an OpenGL ES 1.1 implementation.

Leskela et al. [LNS09] experimented with OpenCL EP 1.0 on mobile devices in 2009.
However, due to the lack of OpenCL support on consumer devices their research was

3See [Low99].
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conducted using a Texas Instruments (TI) OMAP 3430 development board. Performance
measurements were carried out using an example algorithm with three image processing
tasks: geometry adjustment, Gaussian blur and color adjustment. Good results (3.4x
speedup) are achieved with the OpenCL implementation running on the CPU and GPU
concurrently and slightly better results (3.6x) were reported using exclusively the GPU
for the image processing tasks. In terms of energy efficiency the GPU did also outperform
the CPU in their experiments and uses only 14% (GPU only) or 33% (heterogenous
CPU/GPU utilization) of the energy per image compared to the algorithm running on
the CPU alone. However, the authors note that the comparative implementation on the
CPU was not optimized for ARM processors.

Another paper that reports taking advantage of programmable shaders for GPGPU
with OpenGL ES 2.0 was presented in 2010 by Singhal et al. [SPC10]. They propose a
shader-based image processing toolkit with several features including image scaling, color
transformation, convolution operations, edge detection and much more. These functions
can be applied for real-time video processing as three example applications show: video
scaling, cartoon-style non-photorealistic rendering and Harris corner detection.4 For
the latter two applications the performance appeared not to be good enough for real-
time processing on their hardware. The authors report between 6 and 20 frames per
second on a TI OMAP 3430 development board, depending on the video resolution
(320x240 up to 640x480 pixels). Unfortunately this paper does not contain a comparative
implementation running on the CPU alone.

The first comparative results on GPU computing with OpenGL ES 2.0 shaders were
published in 2011. Surprisingly, little or no performance or energy improvements were
reported. Bordallo López et al. [Bor+11] have further deepened their research in the
field and implemented image scaling and the Local Binary Pattern (LBG) algorithm 5

using OpenGL ES 2.0 on several devices.6 The expected performance boost was not
observed, though. The implementation running on the GPU was slower than on the
CPU, but at least “the GPU performance increase[d] as the picture size [grew]”, which
is believed to be “due to improved parallelization.” However, an implementation with
heterogenous CPU/GPU utilization was able to moderately outperform the CPU-only
solution. Furthermore they observed that the GPU gave much better performance re-
sults on per-pixel tasks such as scaling and color preprocessing than did the CPU. This
supports the assumption that not all algorithms are suited well for GPU computation, es-
pecially not on mobile devices. Then again, their implementation apparently did not use
optimal memory access patterns for GPUs, which might cause the partly disappointing
results.

Canny edge detection7 is believed to be an algorithm that is not ideal for GPU compu-
tation, because its CPU implementation usually involves many conditional statements.

4See [HS88].
5See [OPH96].
6Namely: Beagleboard rev. C, Zoom AM3517 EVM board, Nokia N900 Mobile phone.
7See [Can86].
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Nevertheless an implementation on mobile device GPUs was conducted by Ensor and
Hall [EH11] and is described in their article. The authors note that implementing this
algorithm using OpenGL ES 2.0 shaders is quite challenging since it includes “a large
amount of conditionally executed code and dependent texture reads.” Several strategies
are depicted on how to handle these circumstances efficiently. With this they achieved
to implement Canny edge detection “without any conditional statements whatsoever,
ideal for a GPU shader-based implementation on OpenGL ES.” Tests on a wide set of
consumer devices showed diverging results. Many devices like the Nexus One or Galaxy
S did not profit from GPU computation in the experiments; the iPhone 4 speedup was al-
most not measurable (1.03x). By contrast, the application running on a Desire HD sped
up the algorithm by 1.4x. Moreover, the authors report that the algorithm scales with
improved hardware resources so that for example the Galaxy S II achieved a speedup
factor of 2.4x. This clearly shows that even algorithms that seem not to be suited well
for GPGPU can nevertheless be ported for it and achieve good speedup rates, although
potentially difficult to implement.

Cheng and Wang [CW11] can also confirm this as they described the possibilities of
GPGPU on mobile devices for face recognition based on Gabor wavelets.8 Fast Fourier
Transform (FFT) is used to perform the Gabor kernel operations in Fourier space, which
is done on the GPU via OpenGL ES 2.0 shaders on a Tegra 2 development board. This
task is reported to be 4.3x faster than the CPU implementation and uses only 26% of
the energy per image.

Since 2012 more and more papers have reported performance improvements for GPU
computing on mobile devices. Hofmann et al. [HSR12] have implemented Speeded Up
Robust Features (SURF)9 with OpenGL ES 2.0 shaders. They presented an interest-
ing approach where the shader programs are generated at run-time for device specific
adjustments. Their tests on several consumer devices10 have shown impressive speedup
factors ranging from 2x (Galaxy Nexus) to 14x (iPad 4G).

Rister et al. [Ris+13] reworked the SIFT algorithm first ported for mobile device GPU
computation by Kayombya [Kay10]. Their implementation was aimed at minimizing
memory transfers between CPU and GPU, better workload balancing and efficient image
data reordering. Just as did Hofmann et al. [HSR12], shader programs are generated on-
the-fly with user-defined parameters, which results in “branchless convolution” – no loop
conditions need to be checked by the hardware. They report speedup factors from 4.7x
(Galaxy Note II) to 7.0x (Tegra 250). Even better results are reported by Wang et al.
[Wan+13] for an object removal and region filling algorithm11 implemented with OpenCL
on a Snapdragon S4 development board. When running on the CPU, the algorithm took
393.8s compared to only 4.3s on the GPU for the best configuration, which yields 92x

8See [Su+09].
9See [BTG06].

10See table A.1 for details.
11As described in [CPT03].
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speedup. However, it should be kept in mind that the OpenCL implementation on the
CPU might not have been optimized for the processor.

To conclude, Pulli et al. [Pul+12] give an extensive overview of the topic with a focus on
computer vision (CV) algorithms in OpenCV.12 They compare heavily optimized CPU
implementations (using NEON13 optimizations and TBB multithreading) of several al-
gorithms with variants that utilize the GPU for applicable tasks like image resizing and
warping. In the example applications that included panorama stitching and video stabi-
lization on a Tegra 3 development board, the GPU powered implementations achieved
a total speedup of 1.5-2.0x and 5-6x, respectively.

3.3.2. Conclusive Thoughts about Related Research

Table A.1 in the appendix provides an overview of the discussed papers and their results.
This extensive review of prior art about GPU computing on mobile devices shows com-
mon approaches and certain trends that developed in the last four to five years. Most
researchers focused on GLSL implementations for their experiments, since it is supported
by almost every mobile device with a GPU (except for Windows Phone). Some results
were rather disappointing but might be caused by non-optimized shaders with a large
amount of control sequences and irregular memory accesses [Kay10; Bor+11]. This un-
derlines that shader programming is challenging and requires a good understanding of
the special GPU architecture on mobile devices. Having jumped this hurdle, GPGPU
delivers very promising results for specific domains. Many papers discussed low-level
image processing tasks like resizing, warping or color conversion. Some even successfully
implemented high-level computer vision algorithms like SIFT or SURF. The majority of
articles reports performance gains and those that measured power consumption also re-
ported more energy efficiency in most cases. Although many experiments were conducted
with development boards, successful implementations on a wide range of consumer de-
vices could also be shown [EH11; HSR12; Ris+13].

OpenCL on mobile devices was rarely examined for GPU computing, which is probably
due to limited support on such devices [LNS09; Wan+13]. However, tests have shown
that OpenCL might be a suitable solution if a wide range of manufacturers decided to
add support. Its advantage is that it is easier to implement and less dependent on GPU
hardware, because the OpenCL standard specifies certain hardware requirements. But
since OpenCL is not widespread, RS is supposed to step into the breach, at least for
Android devices. Unfortunately GPU computing support is still quite new in RS, so no
publications closely analyzed its potential so far. This thesis will try to fill this gap and
will also provide comparative results with RS and OpenCL. Furthermore, the application
domain for GPGPU should be broadened so that algorithms from other DSP areas such
as audio processing can be taken into consideration.

12OpenCV is an open-source computer vision framework. See http://opencv.org.
13NEON is an SIMD instructions extension for ARM processors.
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4. Analysis and Comparison of GPGPU
Technologies on Mobile Devices

Available GPGPU technologies and their programming models on mobile platforms
have been introduced in section 3.2. This chapter focuses on a practical view and
compares the mentioned technologies in terms of their performance, features, develop-
mental support and documentation. Several fundamental problems in different fields
of digital signal processing are selected for comparison purposes and are implemented
in prototypes using respective GPGPU technologies. The results of this chapter af-
fect the decision which technology to use in the practical project presented in chapter
5.

4.1. Selected DSP Tasks and their Implementation for the
Purposes of Analysis and Comparison

Three popular tasks in the field of DSP are chosen to compare different GPGPU tech-
nologies on mobile platforms. Of course, a vast number of problems in such a big area of
computer science exists. Multiple solutions in the form of algorithms are already present.
Choosing only three of these solutions cannot be considered representative. Instead, an
overview is given here of the different possibilities, features and implementation difficul-
ties of several technologies. Possible performance improvements that can be expected
with comparable problems are examined.

4.1.1. Generic Kernel-based Image Convolution

Convolution is a fundamental image processing task that takes the neighborhood of
pixels into account for image transformations [RR08, 57f.]. It is widely used for sev-
eral purposes such as blurring, sharpening, edge-detection and many more. Convolu-
tion is a linear filter operation that can be performed by applying a matrix or ker-
nel K to all pixels of an image Iin to produce a convoluted image Iout as in equation
4.1.

Iout(x, y) =
∑
i,j

K(i, j)Iin(x+ i, y + j). (4.1)
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Since the kernel operations can run independently and require few conditional state-
ments (usually only for image borders) it is optimal for parallel processing and can be
implemented by using a data decomposition approach (see section 2.4.2). The image can
be divided in N equal-sized regions of pixels that are handled by N workers in parallel.
Another optimization is separating a kernel convolution into two convolutions, one for
vertical and one for horizontal direction, and apply only an one dimensional kernel row
respectively. This reduces the order for this operation from O(N2) to O(N) for a NxN
sized kernel. The problem is that this optimization can only be adopted for separable
kernels, i.e. for a matrix K where rank(K) = 1 [Edd06]. Examples are averaging kernels
or Gauss kernels [RR08, p. 79].

4.1.2. Hough Transform for Line Detection

1. Preprocessing
(produce binary image)

2. Transform and cast votes
(each feature pixel forms set of 
possible lines running through it, 
collinear lines form vote maxima)

3. Find maxima
(identify local peaks)

4. Convert back to coordinate 
space
(each peak representing a line is 
converted back to image space)

Figure 4.1.: Generalized Hough transform approach.

Identifying geometric primitives such as lines or circles and determining their properties
is a very common problem in computer vision [Rus07, p. 560]. This step is usually
performed after potentially interesting features such as edges have been detected in a
previous step. Such features are represented in a binary image. For the case of identifying
straight lines in such an image, Hough [Hou59] produced the basic idea of representing
them in parameter space. Here, each feature pixel (i.e. edge pixel) is mapped to a set
of parameters which form lines that potentially pass through that pixel. The parameter
space is discretized and each additional feature pixel adds a vote for its parameters in a
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vote map (also called accumulator map). By finding peaks in this map, collinear pixels
that form a straight line can be identified. The generalized idea is depicted in figure 4.1
and is the basis of many variants. A significant extension was suggested by Duda and
Hart [DH72]. Hough’s initial approach was unable to find vertical lines, since the slope
m cannot be unbounded during computation. Duda and Hart eliminated this problem
by using polar coordinate representations of lines:

r = x cos θ + y sin θ. (4.2)

!
s→

l

y

x

r

Figure 4.2.: Line l with support vector s, described by polar coordinates r and θ.

In this equation, a line is described by the help of a support vector s, as shown in
figure 4.2. Parameters r and θ describe the length of s (Euclidian distance between a
line and the origin), and its angle. It is therefore possible to describe each line in an
image with a unique pair of θ and r parameters. Hence, with θ ∈ [0, π] and r ∈ R as
the discretized parameter space, each feature pixel generates a set of sinusoidal curves
rx,y(θ) = x cos θ+y sin θ in this space, which represent all potential line orientations for a
feature pixel at x, y. For each feature pixel collinear with another in the original cartesian
image space, the related curves cross one another, producing peaks in the vote map. By
applying some sort of threshold these maxima can be identified so that for each vote
map maximum, a line i with parameters ri and θi is found.

In practice, θ is set to have a certain resolution to represent line orientation, such as
a resolution of 1◦ steps with 0◦ ≤ θ < 180◦. The domain of r must similarly be
restricted in practical applications. Since it describes the distance from the image center
at W/2, H/2 (with W and H being the image dimensions), its minimum and maximum

33



value R can be easily calculated as Euclidian distance to the farthest point from the
center: R = ±

√
(W/2)2 + (H/2)2.1

Hough transform can be efficiently parallelized by using data decomposition (see section
2.4.2) because it operates independently on each pixel. However, synchronized memory
access to the vote map is crucial in this case. Furthermore, the problem with most
variants of the Hough transform is that they are computationally expensive, because
they use a “brute-force voting scheme” [FO08], calculating each possible parameter (in
a certain discretization step) of each feature pixel. Enough memory to represent the
entire voting map in parameter space is therefore required. Fernandes and Oliveira
[FO08] further note that since discretization and pixel segments are not exactly collinear,
“secondary peaks” are created which result in duplicate or bogus lines. Variants exist
that attempt to mitigate some of the described problems. Some of these variants are are
discussed in the next section.

Hough Transform Variants

Fernandes and Oliveira [FO08] question the “brute-force” method of the classic Hough
transform and suggest an approach that at first tries to identify “clusters of approxi-
mately collinear pixel segments”. Out of these segments an “elliptical-Gaussian kernel”
is generated, which represents the dispersion of feature pixels around the best-fitting
line. The larger the dimensions of the kernel, the more dispersed are the feature pixels
in the cluster. This means that it is less likely to contain a well-formed straight line.
The authors state that especially by forming clusters of possible lines, less spurious lines
are detected and the performance is increased. The first steps of this algorithm, which
produce the mentioned clusters, include linking together neighboring feature pixels as
strings and then subdividing them into segments. The first step, which is basically a bor-
der following technique [SA85], is especially hard to parallelize on GPUs since it involves
branching and dynamic loops or recursion. Nevertheless it could be possible to paral-
lelize the voting scheme with the elliptical-Gaussian kernel for each identified cluster.
The worth of parallelization in this case depends on delivering enough speedup when
compared to variants using the basic “brute-force” approach, which might be suited
better for GPU computing since they do not involve additional steps for identifying
clusters.

An approach that is well optimized for line detection on GPUs is suggested by Dubska
et al. [DHH11]. The basic idea is to optimally exploit the capabilities of a graphics accel-
erator by utilizing its fast drawing functions for geometric primitives. While rasterizing
sinusoids (as required by the parameter space introduced by Duda and Hart [DH72]) is a
comparatively slow process, lines can be rendered very efficiently on a GPU. To achieve
this, the authors introduce a new parameter space to be applied in the Hough accumu-
lator map, which is based on parallel coordinates (PC). As depicted in an example in

1In practice, negative values for r are usually avoided by choosing r ∈ [0, 2R].
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(a) Three collinear points and line l pass-
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(b) Parallel coordinates u, v-space. Line
l is the intersection l′ between the
collinear points.

Figure 4.3.: Relation between cartesian space and parallel coordinates space [DHH11].

figure 4.3, a point Px,y in cartesian space becomes a line p′ from Px to Py, which are at
separate axis x′ and y′ in parallel coordinate space u, v. An intersection of these lines
happens when two or more points are collinear in cartesian space. These intersection
points, however, could exist in infinity for cases such as y = x or x = a. The authors
therefore used homogenous coordinates in projective space where a line can be described
as l : ax + by + c = 0 (simply written as [a, b, c]), which allows representation of the
previously mentioned cases. The relationship of l referring to its representation l′ in
parallel coordinate space is defined by the authors as:

l : [a, b, c]→ l′(db,−c, a+ b). (4.3)

A line which is denoted in the slope-intercept form l : y = mx+b can then be transformed
to a point l′ = (d, b, 1 −m) in projective space, where d is the distance between the x′

and y′ axes in parallel coordinate space.
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Since l′ can only lie between the axes x′ and y′ if −∞ < m < 0, the authors propose to
use a twisted space T with the axis x′,−y′ besides the already introduced straight space
S with x′, y′. A point l′ lies in this space T if 0 < m <∞. This results in two equations
for l′, depending on m:

l′S = (d, b, 1−m),−∞ ≤ m ≤ 0, (4.4)

l′T = (−d,−b, 1 +m), 0 ≤ m ≤ ∞. (4.5)

So a line l in cartesian space can either lie as l′ in S or T space. In the special cases where
m = 0 or m = ±∞, l′ is located on either both y′ axes (for m = 0) or on both x′ axes
(m = ±∞). For proper visualization, S and T space can be attached together, creating
a TS space depicted with examples in figure 4.4. As can be seen, each point Px,y in
cartesian space produces two lines: A line p′t from P−y to Px and a line p′s from Px to Py.
The intersection points in the TS can be accumulated in a vote map as in the standard
Hough transform approach. The discretizations of its dimensions can be chosen on the
basis of memory requirements and the requested precision.
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line l

A

B

1

1

(a) Two collinear points and line l passing
through them in cartesian x, y-space.
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(b) TS space. Since −∞ < m < 0, the
intersection l′ lies in the S space.

Figure 4.4.: Relation between cartesian space and TS space.

The advantage to the proposed approach is its high-performing implementation on graph-
ics accelerators. The vote map in TS space can be seen as a frame buffer, in that
a GPU-accelerated program draws semi-transparent lines which accumulate at intersec-
tions. The peaks in this vote map can be extracted to find the dominant lines of the input
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image. The authors present an implementation of their approach based on OpenGL 3.3
shaders and desktop graphics hardware. This achieves real-time performance – even on
images with as many as 100,000 edge points and 4 megapixel resolution. The question
remains if and how this approach can be transferred to mobile systems with limited
resources and restricted APIs.

4.1.3. Audio Synthesis with Real-Time Waveform Generation

In digital audio synthesis, real-time waveform generation is a fundamental approach to
generate sounds that can be dynamically controlled and modified by the user. In its
simplest form, a basic waveforms such as a sine, square or triangle wave is generated (or
taken from a wavetable) with a certain frequency which results in a tone at a certain
pitch. Such waveforms can be used in conjunction with synthesis techniques – includ-
ing additive synthesis, frequency or amplitude modulation – to produce a rich variety
of sounds. See Roads [Roa96, chapt. 2] for more information about sound synthe-
sis.

In practice, real-time generated sounds are usually produced by filling an audio buffer
of a certain size with sound samples. These sound samples can be generated using a
waveform generation formula w(t) that will produce (usually periodic) discrete samples
at a continuous phase t as shown in figure 4.5.2

t

y

Figure 4.5.: A waveform curve w(t) and its discrete samples.

To obey the Nyquist-Shannon sampling theorem, audio samples must be generated at a
sampling frequency of more than 40 kHz for the entire range of human hearing [Sha49;

2Often, two stereo channels are represented in the audio buffer as interleaved samples.
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Lab03].3 This, together with complex waveform generation rules results in a computa-
tionally expensive task, especially for mobile devices. Parallelizing the generation of sam-
ples for the audio buffer should however be possible, as long as the samples can be calcu-
lated independently which omits techniques such as feedback loops.

4.2. Testing Environment

4.2.1. Testing Device

A Google Nexus 10 was the device available for testing all mentioned technologies. Like
the Nexus 4 and Sony Xperia Z, the Nexus 10 is one of select devices that come with
OpenCL 1.1 system drivers as described in section 3.2.1. Since Google blocked OpenCL
support starting with Android 4.3, the device OS has not been updated and therefore
remains at version 4.2.1. RenderScript and OpenGL ES 1.1 and 2.0 are available.4 The
following list contains the main hardware features as depicted in the official hardware
specifications [Goo13]:

CPU: 1.7 GHz dual-core Cortex-A15

GPU: Mali T604 with 4 shader cores [ARM13]

RAM: 2 GB 12.8 GB/s LPDDR3 RAM

4.2.2. Test Data and Measurements

Only execution time was measured, since memory or power consumption are of less prior-
ity in this work. The measurements were taken using direct calls to System.nanoTime()

(in Java) or clock() (in C/C++) and the difference was converted to milliseconds. The
calculated average of 10 test runs in the image processing tasks and 100 test runs in the
audio synthesis tasks were used to determine the final result. Unless otherwise noted,
only the execution time of the main calculations was gauged, without potential image
format conversions, initializations, memory allocations, etc. In the GPGPU experi-
ments, the time for memory transfers (host memory to GPU memory and vice versa)
was also measured and is noted separately because it is an obligatory task in this con-
text. Furthermore, OpenCL and OpenGL cache the execution of commands. Thus, in
related experiments clFinish() or glFinish() was called to force immediate command
execution for exact time measurements.

344.1 kHz is the industry standard for CD quality and will also be used in this work as default sampling
rate.

4OpenGL ES 3.0 is also implemented in the Mali T604 GPU but the API is only available from Android
4.3 on which, in turn, disables OpenCL support.

38



For the image processing tasks, tests were conducted using four different image reso-
lutions (256x256, 512x512, 1024x1024 and 2048x2048 pixels). Three representations of
each image were used during the tests: A multi-channel color image5, and a single-
channel grayscale variant for the image convolution task, and a binarized variant with
edge features for the Hough transform experiments. Three different sizes (3x3, 5x5,
7x7) of a Gauss kernel were used in the image convolution task.6 There, speedup per
image and kernel size are given for comparison with the CPU-based reference imple-
mentation. In the case of the Hough transform mentioned binary images of different
sizes are used for performance comparisons. For the audio synthesis task the time for
generating 16-bit samples for an audio buffer of different sizes was gauged. Two variants
of this experiment were conducted: Generation of a simple sine-wave at a certain pitch,
and creation of square waves via additive synthesis as described by Burk et al. [Bur+].
The square waves are constructed with three components (three harmonics) resulting in
three additional sine calculations for this variant.

The term speedup and its relation to the number of processing cores in the context of
parallel computing was introduced in the fundamentals chapter in section 2.3.1. Tradi-
tionally it refers to a performance comparison between a single- and multi-core system
that employ the same kind of processor or at least the same basic processor architecture.
However, in this case speedup rates are given for comparison between an implementation
running on the CPU and on the GPU, respectively. Although the test device has two
CPU cores and a GPU with four shader cores, a direct relation between the number
of cores and the performance cannot be drawn because of the fundamentally different
hardware architecture as described in section 3.1.

4.2.3. CPU-based Reference Implementations

To compare the performance results of GPGPU-powered programs with those that run
on a CPU only, the performance of CPU-based reference implementations must be mea-
sured. Whenever possible, a well-tested, optimized open-source implementation of a cer-
tain algorithm was chosen for performance testing on the device.

Image Convolution

Kernel-based image convolution has been tested with an implementation that exists in
the Imgproc package of the open-source computer vision library OpenCV.7 The function

5For CPU-based experiments RGB images were used whereas GPU-based tests use RGBA images
because of preferred 4-byte format support (see http://www.opengl.org/wiki/Common_Mistakes#

Texture_upload_and_pixel_reads).
6Gauss kernels were used because they contain only non-zero values, which otherwise could cause omit-

ted operations due to optimizations done by the compiler. Although possible, the kernel convolution
was not separated into one-dimensional components as shown in section 4.1.1.

7See project website http://opencv.org/.
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(a) Input image. (b) Output image. Blurring is especially
visible in the ornaments.

Figure 4.6.: Example and result image with OpenCV filter2D using a 7x7 Gauss kernel.

is named filter2D8 and can be called with an input image and a kernel matrix. The
tests have been conducted using the Java bindings for OpenCV version 2.4.7. The
results are depicted in figure 4.7 for four-channel (color) and single-channel (grayscale)
images.

As can be clearly seen, the execution time rises linearly by both the amount of pixels
to be processed (determined by the image size) and the kernel size. That three-channel
images take about three times longer to process than single-channel images is apparent.9

Overall, the calculation time is considerably high, especially when working with color
images. A test case with 1024x1024 pixels and a 3x3 kernel takes 52ms (about 19 frames
per second (fps)) to compute for a color image, which is close to the minimum threshold
for real-time applications.

Hough Transform

OpenCV also includes two variants of the Hough transform in its Imgproc package.
The standard algorithm based on [Hou59] and [DH72] is implemented in the function
HoughLines. A probabilistic approach suggested by Matas et al. [MGK00] is used in
the function HoughLinesP. Although the latter is described as being “more efficient”

8See http://docs.opencv.org/modules/imgproc/doc/filtering.html#filter2d for documentation.
9Using RGBA images took about four times longer, which indicates that the function also processes

the alpha channel and furthermore does not take advantage of 32-bit SIMD instructions on the CPU.
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(a) Grayscale images.
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(b) RGB images.

Figure 4.7.: Image convolution using OpenCV filter2D.

in the official OpenCV tutorial [Ope13], it was found to be around 30% slower than
HoughLines. This may be because HoughLinesP also calculates the origin and endpoints
of each line, whereas the other variant only provides the straight line parameters as polar
coordinates.

For testing, the same version of the Java bindings for OpenCV has been used as in
the image convolution task. Each input image is at first preprocessed with the Canny
algorithm [Can86], which produces a binary image with detected edges. The results are
provided by measuring the execution time of the HoughLines function and can be seen
in figure 4.9. Even for very small images of 256x256 pixels the function takes 80ms to
complete, which cannot be considered real-time. That the Hough transform also requires
other computationally expensive steps such as edge detection beforehand should also be
kept in mind.

Audio Synthesis

A simple sine wave and an additive square wave audio synthesis variant as described in
the previous section were implemented using the Android AudioTrack API 10 in stream-

10See http://developer.android.com/reference/android/media/AudioTrack.html for documenta-
tion.
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(a) Input image. (b) Output image with detected lines.

Figure 4.8.: Example and result image with OpenCV HoughLines.

ing mode. Sample buffers with sizes of 4096, 8192 and 16384 samples were generated
using the two variants by calculating each sample in a for-loop with a shifting phase
for the sine calculation(s). Math.sin() was used instead of a (probably faster) sine
lookup-table. The results are depicted in figure 4.10.

As expected, calculation time rises linearly with the sample buffer size since the buffer
is not divided into different ranges that could be calculated independently on multiple
processing cores. Furthermore, the additive variant which involves three more sine cal-
culations per sample is about two times slower. The calculations are performed quite
fast nevertheless, allowing real-time synthesis. Using optimizations such as lookup-tables
for sine and cosine calculations or CPU SIMD instructions (in C/C++ via Java Native
Interface (JNI)) could further improve performance.

4.3. OpenCL

Please note: To avoid confusion, kernel here always refers to an image con-
volution matrix whereas OpenCL kernel programs will be simply called OpenCL
programs throughout this section.
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Figure 4.9.: Hough transform using OpenCV HoughLines.

4.3.1. Special Characteristics

As described in section 3.2.1, OpenCL support on mobile devices is rare and is in an ex-
perimental stage where available. Therefore, the special characteristics of this technology
and its implementation on the Nexus 10 should be described.

Setting up an OpenCL development environment manually is necessary since it is not of-
ficially supported. This could be achieved by using the instructions provided by Scarpino
[Sca13]. OpenCL calls could thereafter be issued using its C API. The header files for
OpenCL must be obtained from the ARM Mali Developer Center11 and the Mali GPU
driver library libGLES mali.so must be linked to the executable.

The Nexus 10 comes with an OpenCL EP 1.1 environment described at compubench.com
[com14] and which can be confirmed by querying the properties on the device. Important
environment variables are CL DEVICE MAX COMPUTE UNITS, which indicates the maximum
number of available parallel processing units and is set to 4 on the Nexus 10, and CL -

DEVICE MAX WORK GROUP SIZE which indicates the maximum work-group size and is set
to 256. As already described in section 3.2.1, this property describes the maximum
work-items a work-group may house. One can specify the number of overall work items
(global work size) and the number of work-items per group (local work size) (and thereby
indirectly the number of work groups) for OpenCL program execution to define shared
memory between work-items. For tasks with independent work-items such as with these

11See http://malideveloper.arm.com/develop-for-mali/sdk/mali-opencl-sdk/ for more informa-
tion.
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Figure 4.10.: Audio synthesis (sample buffer calculation) on the CPU.

tests, explicit declaration of specifications can be omitted, allowing those properties to
be chosen by the system.

Image support queries on the Nexus 10 revealed that RGBA and BGRA image formats
can be used in OpenCL kernels. It was possible to copy and fetch images to and from
the GPU using the respective clCreateImage2D and clEnqueueReadImage functions.
With clCreateSampler creation of an image sampler object for the OpenCL kernel to
read and write image data was possible.

Problems were encountered during OpenCL kernel compilation which is done on-the-
fly during application run-time. Building a kernel from a single source code string
that is larger than 1024 bytes would fail because it is truncated to this maximum string
size. Fortunately, clCreateProgramWithSource permits passing an array of source code
strings. Therefore, this problem can be solved by splitting the source code strings into
chunks of 1024 bytes or fewer.

4.3.2. Image Convolution Task

Implementation Approach

Image convolution with different kernel sizes was implemented in a data-parallel manner
so that each pixel can be processed independently in parallel by the OpenCL program de-
fined in listing 4.1. At first each OpenCL program instance (i.e. each work-item) has to
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find out which pixel to operate on. This is done by calling get global id(0) and get -

global id(1) (line 7) which returns the global work-item ID for each dimension. Since
the work-items operate on each pixel of the image, the result of the function calls is equal
to the pixel location. Then, the neighboring pixels and the center pixel are read depend-
ing on the current pixel location and the size of the kernel (line 12-14).12 These pixel val-
ues are multiplied with the correspondent convolution kernel value and summed to yield
the final pixel value, which is written to the output image.

1 // ( . . . 3x3 image convo lu t ion matrix k i s de f ined as array at the beg inning )
2 kernel void c l f i l t e r 3 x 3 ( read only image2d t srcImg , // input image
3 write only image2d t dstImg , // output image
4 sampler t sampler ,
5 int width , int he ight ) // image dimensions
6 {
7 int2 pos = ( int2 ) ( g e t g l o b a l i d (0 ) , g e t g l o b a l i d (1 ) ) ; // abs . p i x e l p o s i t i on
8 // c a l c u l a t e r e s u l t i n g p i x e l co l o r
9 f loat4 resPx = ( f loat4 ) ( 0 . 0 ) ;

10 for ( int kIdx = 0 ; kIdx < 9 ; kIdx++) { // go through the convo lu t ion matrix
11 // ca l c . neighborhood p i x e l o f f s e t
12 int2 pxOff = ( int2 ) ( kIdx % 3 − 1 , kIdx / 3 − 1) ;
13 // read p i x e l , mu l t i p l y by convo l . matrix value , add to r e s u l t p i x e l co l o r
14 resPx += read image f ( srcImg , sampler , pos + pxOff ) ∗ k [ kIdx ] ;
15 }
16 // wr i t e the r e s u l t p i x e l co l o r
17 wr i t e image f ( dstImg , pos , resPx ) ;
18 }

Listing 4.1: OpenCL 3x3 image convolution kernel excerpt.13

The distribution of work is handled entirely by OpenCL, because there is no need to
strictly define work-groups due to independent work-item operations in this task.

The proposed approach is obviously a simple one and has notable weaknesses. Neigh-
boring pixels are read multiple times from nearby work-items resulting in unnecessary
memory accesses. To prevent this, local data caches could be implemented as proposed
by Gaster et al. [Gas+13, p. 164]. Further optimizations could include vector-read op-
erations and aligned memory accesses [Gas+13, pp. 167-169]. However, the simplified
implementation used here for testing should be sufficient to estimate the performance
improvement potential of OpenCL.

Results

At first, measurements of the data transfer time between host and GPU memory were
taken by copying uncompressed RGBA images of different sizes. The results are depicted
in figure 4.11. Interestingly, copying data to the GPU took about 4 to 6 times longer

12Note that image border checks can be omitted due to enabled image edge clamping.
13OpenCL C data types such as intn or floatn describe vectors of n length.
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than vice versa. The former yields a data transfer rate of about 200 to 300 MB/s,
whereas the latter ranges from about 900 to 1700 MB/s.
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Figure 4.11.: Memory transfer times using OpenCL.

The times for the image convolution operation using OpenCL are shown in figure 4.12.
During testing a significant performance drop was observed when using loop state-
ments. At first, kernel multiplications were applied using a for-loop which resulted
in the calculation times depicted in figure 4.12b. Then variants with an “unrolled”
loop were created (using automated OpenCL C source code generation written for this
purpose), which resulted in an execution time that was about four times shorter than
the original program (see figure 4.12a). This optimization is also described in [Gas+13,
p. 170] and is justified by insufficient ALU utilization when using “tight computation
loops.”

To better understand the potentials of OpenCL, the speedup rates in comparison to the
CPU-based reference implementation were calculated. To calculate the correct speedup,
the total time consisting of computations and memory transfers was used. The results
can be seen in figure 4.13. Since the variants with an unrolled loop perform much
better, their times were used for the comparison. All in all, the speedup rates are quite
satisfying, showing a performance improvement between 2x and more than 5.5x over the
CPU implementation. The speedup rises when using larger images, indicating that the
GPU’s performance scales better with increased problem size. On the other hand, the
performance drops with bigger kernel sizes, which is caused by increasing image pixel
read operations. This could be dampened by local data cache optimizations as described
in the previous section.
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(a) Without for-loop (unrolled).
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(b) With for-loop.

Figure 4.12.: Execution times for image convolution using OpenCL.

4.3.3. Hough Transform Task

Implementation Approach

To implement the Hough transform as a parallel algorithm with OpenCL, the approach
by Duda and Hart [DH72] (briefly introduced in section 4.1.2) seems most viable. The
idea of using parallel coordinate space to draw lines instead of sinusoids into the Hough
accumulator map as suggested by Dubska et al. [DHH11] seems similarly promising, but
it is heavily optimized for graphics APIs such as OpenGL, which (in contrast to OpenCL)
allow fast line rasterization. Therefore, the traditional polar coordinate representation
(see equation 4.2) is used in the accumulator space, which generates a set of sinusoids
rx,y(θ) for each feature pixel.

The OpenCL implementation is a parallelized variant of the general Hough transform
process and can be divided into the following steps:

Memory initialization: The binary input image of size W × H is copied to the GPU
memory and an OpenCL buffer which represents the memory for the accumulator
map is created. The map has the dimensions 180×2R, where the former describes
the discretized values for the θ angle (1◦ steps with 0◦ ≤ θ < 180◦) and the latter
describes the maximum value for r with R =

√
(W/2)2 + (H/2)2. Technically,

since OpenCL buffers are always one-dimensional, the memory is created as an
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Figure 4.13.: Speedup rate for image convolution using OpenCL compared to CPU-based
reference implementation.

array of 180 ∗ 2R unsigned integers. Zero-filled data of this size is copied to the
GPU to provide the correct buffer initialization.

Parallel Hough transform: Each pixel of the binary input image is processed in parallel
on the GPU following the instructions in an OpenCL kernel program excerpted in
listing 4.2. After the absolute position and the position in relation to the image
origin (center point) of a pixel are determined (lines 9-12), a binary pixel value
is read from the input image. If it is a feature pixel (line 14), the r value is
calculated for each possible line direction described by theta. If r is inside the
accumulator space and its absolute value is not too small (line 21)14, a vote is cast
by incrementing the value at the corresponding buffer position in the accumulator
map (line 23). This operation introduces data dependency between parallel tasks
(see section 2.4.2) and therefore synchronized global memory access is absolutely
necessary to execute the incrementation process (which consists of fetching the
buffer value, incrementing it and storing the result) atomically. This can be done
using the atomic inc function provided by an OpenCL extension.15

14It was found necessary to filter out too small |r| values because otherwise stray lines were detected in
the center of the image.

15Atomic functions are natively supported by the full profile of OpenCL [MGM11, p. 387]. For the
embedded profile an extension (cl khr global int32 base atomics) is needed, which is present for
the Nexus 10 OpenCL driver.
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Fetching the result and finding maxima: The result buffer containing the vote map is
read back to main memory. Here, a simple threshold is applied to find out each
maximum i with parameters ri, θi in the map. The parameters are translated back
to coordinate space where they can for instance be drawn as lines on top of the
original image. Finding the maxima could also be parallelized with OpenCL, but
here the focus is set on the Hough transform and only the performance of this step
should be measured.

Since the work-item operations are fully independent of each other (besides the accumu-
lator map incrementations), work distribution is handled automatically by OpenCL as
is the case with the image convolution task.

1 // (THETA STEP, THETAMAX and DEG2RAD are de f ined at the beg inning . )
2 kernel void c l hough ( read only image2d t srcImg , // binary input image
3 global uint ∗accSpace , // vote map (1D bu f f e r )
4 sampler t sampler ,
5 int accSpaceW , int accSpaceH , // acc . space s i z e
6 int imgW, int imgH) // input image s i z e
7 {
8 int accSpaceWHalf = accSpaceW / 2 ;
9 // ab so l u t e p i x e l p o s i t i on

10 int2 absPos = ( int2 ) ( g e t g l o b a l i d (0 ) , g e t g l o b a l i d (1 ) ) ;
11 // r e l . pos . wi th o r i g i n at center
12 f loat2 pos = ( f loat2 ) ( absPos . x−( f loat )imgW/2.0 f , absPos . y−( f loat ) imgH/2 .0 f ) ;
13 // ge t b inary va lue at t h i s p i x e l pos i t i on , check i f i t i s not ”0”
14 i f ( read image f ( srcImg , sampler , absPos ) . x > 0 .0 f ) {
15 // Cast vo t e s in Hough space f o r each p o s s i b l e l i n e o r i en t a t i on
16 for ( int thetaStep = 0 ; thetaStep < THETAMAX; thetaStep += THETA STEP) {
17 f loat theta = ( f loat ) thetaStep ∗ DEG2RAD; // conver t to radians
18 // c a l c u l a t e r ( d i s t ance from or i g i n )
19 int r = ( int ) ( pos . x ∗ cos ( theta ) + pos . y ∗ s i n ( theta ) ) ;
20 // cas t vo te i f we are i n s i d e the vote map
21 i f ( abs ( r ) > 2 && r >= −accSpaceWHalf && r < accSpaceWHalf ) {
22 s ize t accPos = thetaStep ∗ accSpaceW + r + accSpaceWHalf ;
23 atomic inc (&accSpace [ accPos ] ) ; // use atomic incrementat ion
24 }
25 }
26 }
27 }

Listing 4.2: OpenCL Hough transform kernel excerpt.

Results

The results regarding the detection of lines are similar to the CPU-based reference imple-
mentation, as can be seen for comparison in figures 4.14. Some stray lines are detected
that run across the image because of the edge features produced by the Canny algorithm
in the areas with coarse facade structure in the photograph.
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(a) CPU-based reference implementation. (b) OpenCL-based implementation (pro-
jected upon inverted binary image).

Figure 4.14.: Detected lines in the 1024x1024 pixels test image.

The execution time for different image sizes is depicted in figure 4.15a. OpenCL performs
slightly slower than the CPU-based serial variant. Adding the memory copy operations
overhead, the resulting overall processing time is even worse. This is also reflected in
the speedup rates in figure 4.15b. Although common-sense expectation is that a GPU-
based parallel implementation performs better with bigger images, no speedup could
be achieved at all. This could be caused by several factors. First, the OpenCL ker-
nel uses a for-loop statement and two if-statements. Both branching and loops may
have negative performance impact when running the OpenCL program on the GPU,
as was observed with the image convolution kernel in the previous section. Unrolling
the loop for all 180 possible theta values would produce extremely bloated source code
and was not tested. Furthermore, atomic memory operations are demonstrably slower
than the conventional equivalents, because the global memory accesses need to be syn-
chronized between all work-items. Testing showed that without atomic operations the
kernel executes about 10% faster – however, this produces as expected unusable re-
sults.

All in all, the Hough transform performance is rather disappointing, suggesting that
more complex algorithms need further optimization to run well on the GPU with the
help of OpenCL. Other variants of the Hough transform – like the one suggested by
Fernandes and Oliveira [FO08] – should also be tested in the future. Their ideas were
assessed in section 4.1.2 in terms of parallelization possibilities. In the scope of this
thesis, however, this approach was set aside in favor of an OpenGL ES implementation
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(a) Execution times.
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Figure 4.15.: Performance results for Hough transform with OpenCL.

of the ideas suggested by Dubska et al. [DHH11] (described in section 4.5.3). Since this
implementation also has drawbacks, parts of it should be accelerated using OpenCL-
OpenGL interoperability features [MGM11, p. 335].

4.3.4. Audio Synthesis Task

Implementation Approach

To produce sounds, OpenCL must be used in conjunction with Android’s OpenSL ES
API in the NDK. This low-level C API is very complex – but fortunately there is a
small wrapper library written and documented by Lazzarini [Laz12]. Just as with An-
droid’s Java AudioTrack API, a buffer with a specified size must be filled with audio
samples. An OpenCL kernel program is used to generate these samples. Therefore
a one-dimensional OpenCL buffer memory object is created, whose values are calcu-
lated in parallel using the kernel program and then copied back directly to the audio
buffer.

The OpenCL kernel (presented in listing 4.3) first determines at which position within
the buffer to calculate an audio sample value. Since each work-item is assigned to
exactly one value in the buffer (just like each work-item in the image convolution task is
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assigned to exactly one pixel location of an image), get global id(0) can be used to get
the buffer position. The output value is dependent on this position since it determines
the phase of the sine calculations in the waveform generation. This means that the
kernel produces a buffer value like bufp = w(p ∗ step), where p is the buffer position, step
describes a factor that produces certain phase steps per position to generate a calculated
pitch for the sound where w is a function used to generate the waveform, e.g. a sine
function. This alone would introduce truncated phases, resulting in audible glitches
due to non-continuous waveforms at the border between two subsequent audio buffers
as depicted in figure 4.16. To fix this, an additional offset parameter o (or bufOffset

in the source code) needs to be supplied to the kernel each time a new audio buffer is
generated: bufp = w((p + o) ∗ step). This offset shifts the phase to the correct position
for subsequent audio buffers.

1 // phase s t e p s f o r base f r e q . and 3 add i t i ona l waves to produce a square wave
2 constant f loat phStepBase = (440 .0 f ∗ M PI F) / 44100.0 f ;
3 constant f loat phStepAdd1 = 3 .0 f ∗ phStepBase ;
4 constant f loat phStepAdd2 = 5 .0 f ∗ phStepBase ;
5 constant f loat phStepAdd3 = 7 .0 f ∗ phStepBase ;
6

7 kernel void c l s yn th ( int bufOf f se t , global f loat ∗buf ) {
8 const int g id = g e t g l o b a l i d (0 ) ;
9 const f loat p = ( f loat ) ( bu fO f f s e t + gid − 1) ; // phase po s i t i on

10 // c a l c u l a t e the sample
11 buf [ g id ] = s i n (p ∗ phStepBase )
12 + s in (p ∗ phStepAdd1 ) / 3 .0 f
13 + s in (p ∗ phStepAdd2 ) / 5 .0 f
14 + s in (p ∗ phStepAdd3 ) / 7 .0 f ) ;
15 }

Listing 4.3: OpenCL additive audio synthesis kernel.

buffer i buffer i + 1 buffer i + 2

Figure 4.16.: Truncated phases problem that occurs with subsequent buffers without
initial phase offset.
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Results

The same test cases performed with the CPU-based reference implementation were used.
Memory transfer times were not gauged separately. Figure 4.17 depicts the total time
for executing the OpenCL kernel and copying back the OpenCL buffer memory to the
audio buffer. When compared to the CPU implementation, OpenCL scales better with
increased calculation complexity and buffer sizes, as shown in the speedup chart in figure
4.18. A noticeable speedup factor of about 2x is achieved with the additive synthesis
variant using a buffer size of 8096 samples. Doubling the buffer size demonstrates addi-
tional increased speedup. However, doing so would introduce an audible lag for real-time
audio synthesis.
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Figure 4.17.: Audio synthesis with OpenCL (waveform calculations and memory trans-
fer).

It is apparent that the implementation using OpenCL has few problems handling ad-
ditional sine calculations. Therefore the gap between the simple and additive synthe-
sis variants is almost not measurable. Heavy optimization of the GPU’s hardware for
trigonometric functions might be why. These functions are essential for 3D graphic scene
calculations. The bottleneck seems to be the data bus when copying the generated buffer
values back to the audio buffer on the host side.

These results look promising for moving certain audio synthesis tasks over to the GPU.
However, it should be kept in mind that the tested algorithms were quite simple and that
more complex algorithms might require loops or conditional statements. These can intro-
duce introduce substantive performance losses, as was experienced with for-loops in the
image convolution and Hough transform task (see sections 4.3.2 and 4.3.3).
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Figure 4.18.: Speed up of audio synthesis using OpenCL compared to CPU-based refer-
ence implementation.

4.3.5. Overall Experiences

The experiments have shown that OpenCL generally offers better scalability for increased
problem sizes and also – in some cases – for increased algorithmic complexity. To achieve
optimal performance, conditional statements and loops should be avoided since GPUs
are optimized for running similar operations on big data sets. Control structures in-
troduce branches that the GPU cannot handle optimally. Since dynamic algorithms
require loops and conditions (such as image convolution with customizable kernels), it
might be beneficial to generate OpenCL code with unrolled loops and conditions at
run-time.

Developing Android applications that use OpenCL is challenging. The initial setup as
described in section 4.3.1 is not as easy as importing a Java package. It requires using
the NDK and Android’s C APIs, which again introduce an additional layer that has
to be addressed via JNI calls. Debugging C/C++ code is possible but requires several
additional steps to set up (see [Hej11]). Debugging OpenCL code is not even possible at
the moment, leaving only the less desirable path of trial-and-error. Since three different
programming layers and languages (Java in Android SDK, C/C++ in Android NDK and
OpenCL C) are involved, additional overhead and complexity is introduced. To reduce
the number of layers, using an Android Native Activity16 and writing the application
solely in C/C++ might be considered.

16See documentation at http://developer.android.com/reference/android/app/NativeActivity.

html.
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4.4. RenderScript

4.4.1. Special Characteristics

As described in section 3.2.2, RenderScript (RS) has a programming model that is similar
to OpenCL, but its API abstracts any low-level hardware features. This approach takes
both the freedom to optimize for a specific problem or hardware and the responsibility
for ensuring portability away from the developer. Since work distribution cannot be
controlled or traced in any way, it is impossible to determine if the task was executed
on the CPU or GPU.

During development of the prototypes, several issues occurred that made testing al-
most impossible in certain circumstances. Though setting up an Android application
to use RS is much easier than OpenCL since the RS API is part of the Android Java
SDK, RS does not offer OpenCL’s stability, reliability and good documentation. Ap-
plications would reproducibly crash with a segmentation fault after a few test runs
which made batch processing impossible in the testing environment. At time of writing,
the documentation for RS that comes with Android 4.4 is very meager and examples
that are shipped with the SDK are outdated. Because of this, only limited tests could
be conducted. Other cases could not be tested at all due to immediate application
crashes.

4.4.2. Image Convolution Task

Implementation Approach

The way how image processing can be implemented with RS is very similar to OpenCL.
The syntax of the RenderScript C99 dialect is a bit different and the Java API on the
host side is more restricted in terms of work distribution. In general, an Android Bitmap

image is put into an RS Allocation object which is passed to the script using a set

method. The script is then executed using a forEach method. Finally, the data is copied
back to a Bitmap via Allocation.copyTo(). The RenderScript program (see listing 4.4)
defines that it uses an allocation as input data (representing the input image) and expects
an x and y coordinate as parameters. This is basically the same as OpenCL’s global
ID concept and describes the pixel location operated on by the script instance. The
script reads the neighboring pixels using rsGetElementAt() calls and multiplies each
pixel value with its respective kernel matrix value. At the conclusion, all the results are
summed up and returned. The implementation is reminiscent of the method described
in the experiment using OpenCL in section 4.3.2.
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1 // ( . . . 3x3 image convo lu t ion matrix k i s de f ined as array at the beg inning )
2 r s a l l o c a t i o n in ;
3 uchar4 attribute ( ( kernel ) ) make gauss (uint32 t x , uint32 t y ) {
4 f loat4 f 4out = { 0 , 0 , 0 , 0} ;
5 for ( int kIdx = 0 ; kIdx < 9 ; kIdx++) { // go through the convo lu t ion matrix
6 // ca l c . neighborhood p i x e l o f f s e t
7 int kX = kIdx % 3 − 1 ;
8 int kY = kIdx / 3 − 1 ;
9 // read p i x e l , mu l t i p l y by convo l . matrix value , add to r e s u l t p i x e l co l o r

10 f 4out += conv e r t f l o a t 4 ( rsGetElementAt uchar4 ( in , x+kX, y+kY) ) ∗ k [ kIdx ] ;
11 }
12 return convert uchar4 ( f4out ) ;
13 }

Listing 4.4: Excerpt of RenderScript program for image convolution.

Results

Unfortunately it was not possible to get accurate memory transfer time measurements
by gauging the execution time of the respective memory transfer function calls. Such
attempts yielded very different results with often unrealistically short times (below 1
ms). It is very likely that this behavior is caused by command caching, which apparently
cannot be disabled.17 Therefore the total execution time including copying the image
to the GPU and vice versa was gauged instead. Due to the described issues (especially
recurring segmentation faults that provoked application crashes) only an implementation
using a 3x3 convolution kernel was tested. Two variants were produced, one using a for-
loop and one with an unrolled loop.

Figure 4.19a shows the total time measurements for the two variants. Unlike OpenCL,
using loop statements does not result in significant negative impact on the overall perfor-
mance. On the other hand, OpenCL performs this task up to four times faster than RS.
This is reflected in the speedup rates as depicted in figure 4.19b. Although RS achieves
stable speedup rates over all image sizes, the top result is only half as good as OpenCL’s.
Interestingly, the speedup factors compared to the CPU-based implementation do not
rise with image size as is usually the case in such experiments with GPU acceleration.
One possible explanation might be that the calculations were not performed on the GPU
at all. As noted, the work distribution is not transparent when using RS. Therefore, the
possibility exists that the RS system distributed the work using the dual-core processor
and (possibly) SIMD instructions for this task.

4.4.3. Overall Experiences

At time of writing, RenderScript delivers only a premature impression, suffering as it does
of bad documentation and unstable run-time behavior. Since only limited tests could be
conducted, no final conclusion can be drawn about its potential.

17OpenGL and OpenCL also employs command caching as described in section 4.2.2 but there it is
possible to force immediate command execution for exact time measurements.
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Figure 4.19.: Execution times for image convolution using RenderScript.

4.5. OpenGL ES

4.5.1. Special Characteristics

OpenGL ES does not support GPGPU out of the box, as described in section 3.2.3.
Therefore, the concepts suggested by Göddeke [Göd06] (also presented in the mentioned
section), which were applied in related research such as that of Ensor and Hall [EH11],
provide the basis for the GPU computing experiments with OpenGL. For the tests
API, version 2.0 has been chosen because it is available by default on the test device.
Also version 2.0, represents the most widely supported OpenGL ES API for all mobile
devices.

There are two ways to access the API on Android. The Java API contained in the
packages android.opengl allows all OpenGL ES 2.0 functions to be used within the
Android SDK. The other method of access requires using the C API via Android
NDK, defined in the header file GLES2/gl2.h and implemented in libGLESv2. At
first, OpenGL’s Java bindings were used in the experiments. Due to enormous per-
formance problems with glReadPixels (see below), other tests were conducted using
the C API – in conjunction with several extensions – to achieve better memory transfer
speed.
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4.5.2. Image Convolution Task

Initial Implementation Approach

The Java API was used in this initial approach to implement image convolution with
OpenGL shaders. Following the concept described in section 3.2.3, input images are
copied to the GPU to act as a texture by using glTexImage2D. A simple geometry for
a quad (consisting of two triangles) is created as a vertex buffer to actually draw the
result later as a texture on its surface. Two shader programs exist, each consisting
of a vertex and fragment shader. One program defines the rendering pipeline for the
image processing task. The other is optional as it simply displays a quad with the
resulting image. This allows flexible usage, since the former shader program can be used
repeatedly in conjunction with framebuffer objects to enable multi-level filtering (e.g.
separated Gauss kernel convolutions). The desired resolution of the output image is set
using glViewport, which scales the image efficiently on the GPU. At the end, the final
framebuffer output is copied back to main memory using glReadPixels. If no further
processing on the CPU side is necessary this step can be omitted, but usually some result
needs to be copied back from the GPU.

The main work is done in the fragment shader of the image processing shader pro-
gram. The routines in this shader are applied to each single pixel after the rasterization
step, as described in section 3.2.3. Here, the image convolution is applied by fetch-
ing the neighboring pixel values and the center pixel value via texture reads (using
the texture2D function) to multiply them with their respective kernel values. The
results are summed and written to gl FragColor as shader output. To achieve top
performance, no loop statements were used in the shaders. For big kernel matrices
this would mean a high degree of manual effort is necessary to write the shader code.
Therefore, the fragment shader sources are generated dynamically at run-time depend-
ing on the provided kernel. Such a generated fragment shader is excerpted in listing
4.5.

1 precision mediump float ;
2 uniform sampler2D sTex ;
3 uniform vec2 uPxD; // d i s t ance between s i n g l e p i x e l s in t ex . coord ina te s
4 varying vec2 vTex ; // current t e x t u r e coord inate
5 void main ( ) {
6 // read the neighborhood p i x e l s
7 vec4 px00 = texture2D ( sTex , vTex + vec2 (−1.0∗uPxD. x ,−1.0∗uPxD. y ) ) ∗ 0 . 0 625 ;
8 vec4 px10 = texture2D ( sTex , vTex + vec2 ( 0 . 0∗uPxD. x ,−1.0∗uPxD. y ) ) ∗ 0 . 1 2 5 ;
9 vec4 px20 = texture2D ( sTex , vTex + vec2 ( 1 . 0∗uPxD. x ,−1.0∗uPxD. y ) ) ∗ 0 . 0 625 ;

10 // . . . cont inues with more neighborhood p i x e l s . . .
11 vec4 px22 = texture2D ( sTex , vTex + vec2 ( 1 . 0∗uPxD. x , 1 . 0 ∗uPxD. y ) ) ∗ 0 . 0 625 ;
12 // sum up the r e s u l t and save i t as f i n a l fragment co l o r
13 gl FragColor = px00+px10+px20+px01+px11+px21+px02+px12+px22 ;
14 }

Listing 4.5: Excerpt of automatically generated fragment shader code for 3x3 image
convolution (comments and indentations were added manually).
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The fragment shader defines a two-dimensional vector uPxD as a uniform parameter,
which is passed to the shader during rendering. Since texture reads in shaders happen in
texture coordinate space (s, t with values in the normalized range [0.0, 1.0]), a delta value
needs to be specified as ∆x = 1

W (with W as image width) and ∆y = 1
H (with H as image

height), so that it describes the distance between two orthogonally neighboring texture
pixels in the texture coordinate space. By this, the proper neighboring pixel values can
be read from texture memory. Texture borders do not have to be treated specially, since
edge clamping (see [MGM11, p. 194]) is enabled.

Results under Usage of glReadPixels

Once again, memory transfer times were measured by copying RGBA images of different
sizes to the GPU memory and vice versa. The results are depicted in figure 4.20 and
reveal a very ambivalent case: Copying data to the GPU happens very fast, even faster
than with OpenCL, and results in speeds of about 270 to 370 MB/sec. Copying back
the data from the GPU to main memory, however, delivers a very poor transfer speed
between 4 and 5 MB/sec. At this speed, the data transfer for a 2048x2048 RGBA image
(16 MB) takes almost 3 seconds to complete. This seems to be a known issue related
to the glReadPixels function and is documented by Bim [Bim13] and Fung [Fun13].
Their respective articles also list several solutions, which are discussed in the next section,
where an optimized implementation is presented.
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(b) Copying images back from the GPU.

Figure 4.20.: Memory transfer times using OpenGL.
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The pure rendering performance, i.e. the time it takes for the image convolution task
to complete on the GPU, should be examined. The overall results show that the
performance is comparable to OpenCL and are displayed in figure 4.21a. Calculat-
ing the speedup between OpenGL and OpenCL for the experiment using a 3x3 ker-
nel revealed that OpenGL delivers only slightly better results for bigger images (1.3x
better than OpenCL with the 2048x2048 image), whereas it is up to 2x slower for
smaller images. This might be caused by additional overhead as described in section
3.2.3.
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(b) Speedup as compared to reference.

Figure 4.21.: Results for image convolution with different kernel sizes and images using
OpenGL.

Clearly, the poor data transfer performance results in disappointing speedup rates. The
values displayed in figure 4.21b are not surprising. The CPU-based reference implemen-
tation is between 2x and 3x faster than the OpenGL-based variant. However, OpenGL’s
full GPGPU potential could be unleashed using alternative solutions for reading the
framebuffer.

Optimized Implementation Approach

The low data transfer rate for copying data from the GPU using glReadPixels makes
OpenGL unusable for GPGPU in real-time scenarios. Fortunately, solutions exist as
mentioned in the previous section. Bim [Bim13] recommends using glGetTexImage or
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pixelbuffer objects (PBOs). Unfortunately the former is not available in OpenGL ES at
all and the latter is only supported from version 3.0 onward. Fung [Fun13] addition-
ally suggests using an EGL18 extension called EGL KHR image base which “achieves the
same performance as PBOs, but only require[s] OpenGL ES 1.1 or 2.0.” An article by
Montgomery [Mon12] describes the idea in more detail and provides suggestions for im-
plementation. Image data transfers between the host system APIs and OpenGL ES can
be accelerated in both directions using an EGL image, as depicted in figure 4.22. This
method enables to use an image – such as a video frame taken with the device camera –
as an OpenGL texture by means of an accelerated bit blitting operation or memcpy which
is “still typically faster than using glTexImage2D to load textures” [Mon12]. In the op-
posite direction, OpenGL ES can be used to render a frame into an FBO, which can then
be used as EGL image to perform the same operations, transferring the data back to the
host system. Image compression, which is directly supported at the hardware-level by
most GPUs, could be considered another solution for decreasing the data transfer delay.
Montgomery [Mon12] states that “[t]he texture compression algorithms implemented in
3D accelerators are asymmetrical, meaning that it is much more compute intensive to
compress an image than to decompress the same image” and therefore advises against
using this idea.

Host System APIs

OpenGL ES

EGL API

EGL Image

2D Texture

EGL Image

2D Texture

FBO

Figure 4.22.: Image data exchange between host system and OpenGL using EGL images
[Mon12].

This approach is implemented on Android systems using a native Android OS API
called gralloc or GraphicsBuffer. It allows creating a frame buffer in CPU/GPU shared
memory. The system is documented in depth by the Android Open Source Project [AOS]
but is only part of the operating system and therefore available neither in the SDK nor
NDK. Using the API is technically possible in the NDK but requires some manual effort

18EGL is an interface that sits between rendering APIs of embedded systems (such as OpenGL ES) and
the native window system [Khr14].
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as described by Willcox [Wil11]. To do so involves linking two Android system libraries
(libEGL.so and libui.so) dynamically at run-time. Pointers to some of the functions
contained in the libraries must be acquired by using dlsym. Because the process of
copying data from the GPU was found to be slow, the workaround was implemented
only for that portion of the whole data transfer procedure, as shown in listing 4.6. For
that the buffer can be locked to ensure consistent data when using memcpy to copy the
data into a buffer that is then processed by the host system. Looking at source code
provided by the Mozilla Community [Moz13] helped to implement this workaround. It
is unclear why these functions are not provided natively in the SDK or NDK and using
them requires such tricks.19 Furthermore, this breaks portability since it only works on
Android devices. For iOS devices, other solutions exist to work around the glReadPixels
bottleneck [Lar12a].

1 // bind fbo
2 glBindFramebuffer (GL FRAMEBUFFER, fboID ) ;
3 // bind at tached t e x t u r e and s e t EGL image t a r g e t
4 glBindTexture (GL TEXTURE 2D, attachedTexId ) ;
5 glEGLImageTargetTexture2DOES (GL TEXTURE 2D, eglImg ) ;
6 // l o c k the graph ic s b u f f e r at ” graph icsPtr ” to s a f e l y read i t s content s
7 unsigned char ∗ graph ic sPtr ;
8 GraphicBufLock ( graphicBuf ferHndl , GRALLOC USAGE SWREAD OFTEN, &graph ic sPtr ) ;
9 // copy the RGBA p i x e l s from the graph ic s b u f f e r to ” buf ”

10 memcpy( buf , graphicsPtr , texW ∗ texH ∗ 4) ;
11 // unlock graph ic s b u f f e r again
12 GraphicBufUnlock ( graphicBuf ferHndl ) ;
13 // unbind FBO
14 glBindFramebuffer (GL FRAMEBUFFER, 0) ;

Listing 4.6: Excerpt for copying back the result image from an FBO using the EGL
image extension and Android GraphicsBuffer.

An optimization of the kernel convolution was carried out to further improve the overall
performance. Since Gauss kernels are used for testing, they are separated into two
orthogonal convolution operations using one-dimensional kernels as described in section
4.1.1. The operations are performed in two rendering passes. The first pass operates
on a 90◦ rotated image to benefit from linear memory access patterns as described by
Rister et al. [Ris+13].

Results for Improved Implementation

As shown in figure 4.23a, the memory transfer times for copying image data from the
GPU to the host system decreased dramatically. Where glReadPixels took about
3 seconds to copy the largest image, the revised operation using an EGL image now
happens within 25 ms, which is even approximately two times faster than the image

19This also involves for example acquiring pointers to the API functions by their compiled symbol names
such as ZN7android13GraphicBufferC1Ejjij.
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(b) Execution times using separated one-
dimensional Gauss kernels in two-pass
operation.

Figure 4.23.: Results for image convolution using OpenGL with the improved implemen-
tation.

upload using glTexImage2D. The time was measured for acquiring the lock on the shared
graphics memory buffer and copying the data using memcpy. Another improvement in
performance is achieved by calculating the Gaussian image convolution in two passes
with a one-dimensional kernel, as shown in figure 4.23b. That a positive effect can only
be achieved with bigger images and kernel sizes is apparent. The cause of this is the
second rendering pass that introduces additional overhead.

The improved overall performance is also reflected in the achieved speedup rates as
shown in figure 4.24. With speedups between 2x and 8x, OpenGL partly outperforms
the (not optimized) OpenCL implementation. However, it does not deliver a clear linear
speedup gain on increasing image and kernel sizes, which might be connected to the two-
pass rendering overhead. The results are nevertheless satisfying and could be further
improved, by replacing the usage of glTexImage2D for copying the image to the GPU
with the faster EGL image approach.
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Figure 4.24.: Speedup rates of improved OpenGL image convolution implementation as
compared to reference implementation.

4.5.3. Hough Transform

Implementation Approach

The implementation for line detection using the Hough transform is based on an ap-
proach suggested by Dubska et al. [DHH11] and was described in section 4.1.2. The
authors of the article use OpenGL 3.3 geometry shaders, with which it is possible not
just to modify single vertices of geometric primitives (as with vertex shaders) but to
generate new vertices. These shaders are used in conjunction with instanced render-
ing [Kom13] to calculate the position of each pixel to be read from the source texture.
They harness the possibility of generating vertices to create a three-point line strip in
TS space (the accumulation space) for each source pixel that is identified as an edge
pixel. In the rasterization process, additive blending is used so that individual line strips
are accumulated and peaks are formed where many intersections occur. The results are
rendered into a floating-point texture (GL GLOAT) so that overflows that could quickly
happen by using byte formats (e.g. GL UNSIGNED BYTE) are avoided. In the last step the
local maxima in TS space are detected by another geometry shader which checks the
neighborhood of each pixel in the accumulator space.

Implementing this approach on mobile devices presents several problems: First and
foremost, there are no geometry shaders (or comparable features) available in OpenGL
ES 2.0 (and also 3.0) since only vertex and fragment shaders can be used to program the
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rendering pipeline. Additionally, instanced rendering is only supported since OpenGL
ES 3.0 (which is not widely available yet, as shown in section 3.2.3). Another problem
is that framebuffer textures must be color-renderable, forbidding the use of GL FLOAT

textures as FBO targets [ML10, p. 117; Lip13, p. 203]. The iOS-based project GPUImage
[Lar12b] addresses these issues by calculating the TS space coordinates on the CPU-side
and then submitting the calculated points to the OpenGL renderer as vertex buffer, from
which the line strips are drawn using a simple vertex shader. The rasterization takes
place with alpha blending enabled but the rendering target is of format GL UNSIGNED -

BYTE, which means that only 256 discretization steps for the voting are available. This
implies that after 256 intersections happened at the same discretized spot, an overflow
occurs. In this case, that means that the pixel value stays at the 8-bit maximum value
of 255. The peaks are therefore trimmed, which can result in spurious lines. Another
problem is that only the accumulation process is performed on the GPU and that the
CPU implementation of the TS space coordinate calculation requires access to the binary
image. If an application performs the edge detection process on the GPU (which can be
efficiently implemented on mobile devices as shown by [EH11]), the result image needs
to be copied back to main memory before it can be processed to generate the TS space
coordinates. This introduces memory transfer overhead. Hence a continuous GPGPU
processing pipeline is preferable.

To circumvent this drawback, a way to calculate the TS space coordinates on the GPU
using an OpenGL ES 2.0 vertex shader was devised and is shown in listing A.1 in the
appendix. By the help of vertex shader texture lookups20 (line 22), it is possible to
identify the edge pixels of the binary input image directly in the vertex shader. Then,
the respective line point coordinates for the TS space can be calculated in the same
shader, so that for each edge pixel four points are generated. The four points represent
the beginning and ending points for the line in T and S space respectively. The rest of
the algorithm works as before. The lines will be drawn with alpha blending and hence
are being accumulated in the framebuffer, which acts as the vote map. Finally, a simple
thresholding mechanism implemented in a fragment shader determines the peak votes.
After copying back the result image to the host side, the peaks are identified and their
positions (in TS space) are converted to slope-intercept line parameters m and b. The
overall process is depicted in figure 4.25.

The problem with this approach is that the vertex shader needs to read the value of each
pixel in the input image. What is a common task for a fragment shader is on the other
hand harder to achieve in a vertex shader. It requires submission of an attribute array of
texture coordinates describing the position of each pixel in the input texture (aTexCoord
in the provided source code). The next problem is that vertex shader output is restricted
to one vertex (defined as gl Position) at a time, which means that the shader needs to
be executed four times per input image pixel (once for each line point21). Texture reads

20Available with the GLSL function texture2DLod as documented in [SK09, p. 71].
21Note that the line strip in TS space always consists of three points (on −y, x and y axis), but four

points are needed to construct the lines in OpenGL using GL LINES. Using GL LINE STRIP is no option,
because then all generated points would form one poly-line.
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CPU side GPU side

Texture lookup coordinates

Line point types (0, 1, 2, 3, 
0, 1, 2, 3, …)

Binary input image

Pass 1: Accumulation

Vertex shader

Fetch pixel value from texture

If edge pixel: Calculate TS space 
coordinate depending on position and 
line point type

Fragment shader

Add smallest possible pixel color value 
for accumulation

Issue command to draw lines: 
glDrawArrays(GL_LINES, …)

Pass 2: Thresholding

Binary output imageAnalyze output image, 
transform peak positions (TS 
space) into line parameters

Figure 4.25.: Diagram of processing steps for the OpenGL-based Hough/PC lines trans-
form. The single line point type values determine which point shall be
calculated (begin or end, T or S space).

are thus quadrupled, since there is no way to directly implement caching in a vertex
shader. In addition, to emulate instanced rendering in OpenGL ES 2.0 (which is needed
to know what kind of line point must be calculated in the vertex shader), an additional
attribute array with a continuous sequence of line point type identifiers (0, 1, 2, 3, 0, 1,
2, 3, ...) must be generated and submitted to the shader (aTSCoordType in the depicted
shader source code).

Results

Evaluation shows that the algorithm works partially as expected and is capable of de-
tecting straight lines in images as shown in figures 4.26. However, some incorrectly
detected lines are visible crossing the image diagonally. This is most probably caused
by the low number of discretization steps in the vote map, combined with the simple
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(a) TS space result.
(b) Output image with detected lines,

drawn upon the edge detection image.

Figure 4.26.: Result images for PC lines based OpenGL Hough implementation (both
images are inverted).

thresholding method. Both could be improved in the future by using floating-point tex-
tures as FBO rendering targets via OpenGL ES 2.0 extensions [Lip11] and by employing
a more sophisticated thresholding algorithm. For the purposes of speed measurement,
these optimizations are not necessary.

The achieved performance of the suggested implementation approach is rather disap-
pointing. Interestingly, the initial program was not capable of handling the two bigger
test images. Although no errors were thrown, the result images remained black, which
is most probably because of the extensive amount of texture coordinates that are passed
to the vertex shader. A “texture sampling factor” was therefore implemented, allow-
ing the number of texture reads in the vertex shader to be reduced. When this factor
is set at 2, every second pixel is omitted. Still, the tests with the biggest image size
(2048x2048 pixels) fail with this setting, but at least the other three image sizes are
accepted. Figure 4.27a shows the execution times of the PC lines calculation and ac-
cumulation rendering pass. As can be seen, the execution time rises exponentially with
increased image size. Although a small speedup can be achieved using the smallest
image, as is shown in figure 4.27b, the overall performance is poor. This is probably
because the vertex shader requires an array of texture coordinates for every single pixel
it needs to process. The array grows enormously with the image size. Additionally, this
process has to be executed four times per pixel, further increasing the amount of texture
read operations.
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Figure 4.27.: Performance results for the PC lines based OpenGL Hough implementa-
tion. Note that the experiments were taken using a “texture sampling
factor” of 2.

The results reveal that it is hard perform tasks like this Hough transform variant purely
with OpenGL ES 2.0, mainly because of the lack of geometry shaders. Calculating the
TS coordinates in a vertex shader is inefficient, but remains the only option when this al-
gorithm is implemented using OpenGL ES 2.0. The TS space coordinate calculation step
could be executed on the CPU side as done in the aforementioned GPUImage project.
But, since copying framebuffer data back and forth from the GPU memory should be
avoided, the only other possible solution would be to implement the calculation of TS
space coordinates with OpenCL. By using OpenCL-OpenGL interoperability functions
as described in [MGM11, p. 335] this approach could be employed but would sacrifice
portability.

4.5.4. Audio Synthesis Task

Implementation Approach

The audio synthesis experiment was implemented by generating a “sound framebuffer”
in the fragment shader and copying the contents of it to the audio buffer to achieve
playback – an idea suggested by Borgeat [Bor12].22

22A live example using WebGL can be seen at http://www.cappel-nord.de/glsl-audio-sandbox/.
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1 uniform vec2 uRes ; // b u f f e r r e s o l u t i o n
2 const f loat phStep = 0.06268937721 ; // phase s t ep (440Hz sine , 44.1 kHz sampling )
3 void main ( ) {
4 // c a l c u l a t e sample po s i t i on
5 f loat smplPos = gl FragCoord . y ∗ uRes . x + gl FragCoord . x ;
6 // c a l c u l a t e sample va lue
7 f loat smpl = ( s i n ( smplPos ∗ phStep ) + 1 . 0 ) / 2 . 0 ;
8

9 // use two channels and d i v i d e in to two bytes , each
10 vec2 s t e r e o = vec2 ( smpl , smpl ) ;
11 s t e r e o = s t e r e o ∗ 255 . 0 ;
12 vec2 upper = f l o o r ( s t e r e o ) ;
13 vec2 lower = s t e r e o − upper ;
14 upper /= 255 . 0 ;
15

16 // save the r e s u l t
17 gl FragColor = vec4 ( lower [ 0 ] , upper [ 0 ] , lower [ 1 ] , upper [ 1 ] ) ;
18 }

Listing 4.7: Fragment shader for simple sine wave audio synthesis.

To begin, the size of the framebuffer is specified via glViewport. It works similarly
to the memory buffer object described in section 4.3.4 – audio samples are written to
it depending on the position inside the buffer. Since the framebuffer plays the role of
the audio buffer, its width and height need to be set to values that result in the proper
audio buffer size. For example, setting the viewport to 128x64 pixels results in an audio
buffer of 128 ∗ 64 = 8192 samples. The fragment shader shown in listing 4.7 works like
the OpenCL kernel for audio synthesis, excepting that it does not operate on a one-
dimensional, but a two-dimensional buffer. It calculates the current position inside the
buffer using the gl FragCoord variable in accordance with the provided sample buffer
resolution uRes (line 5). The phase for the sine wave oscillator is derived from this
position, and then the output sample for this buffer element (i.e. this framebuffer pixel)
can be calculated. Since the shader produces the pixel color as a four-component RGBA
vector, R/G and B/A together can form two 16-bit stereo channels with two 8-bit (upper
and lower byte) fields each [Bor12].

Although this approach technically works, the results were not satisfying since audible
artifacts strongly distorted the sound output. The main source of this problem is that
the point in time when the audio buffer should be generated – corresponding to the
rendering of the frame buffer – is not directly controllable. Although it is possible to
render the framebuffer upon request23, it is not clear when this request will be fulfilled,
leading to glitches in the audio signal due to missing samples. Because of these problems,
GPGPU-powered audio synthesis using OpenGL was not found to be practicable, at least
on Android OS. Further evaluation is therefore set aside.

23This can be achieved using the rendermode “dirty” and calling requestRender on a GLSurfaceView.
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4.5.5. Overall Experiences

Despite initially disappointing results, using OpenGL shaders on mobile devices for GPU
computing was found to be feasible – at least for data-parallel image processing tasks.
Using special shared memory API calls effectively eliminates the bottleneck of reading
back pixel data from the GPU. Mapping a parallel algorithm to shader programs is at
times a challenging, ineffective or impossible task due to limitations in the programmable
shader pipeline of OpenGL ES 2.0. More complex algorithms must be divided into
multiple rendering passes, introducing additional overhead. API extensions, undocu-
mented or unofficial functions are necessary in order to gain decent memory transfer
speeds but introduce portability issues. Because of this, it is necessary to implement
platform-dependent code by querying for available OpenGL extensions. As a fallback,
GPU computing support could be disabled for devices that only support OpenGL 1.x
or have no alternative to the slow glReadPixels function. Nevertheless, OpenGL ES
is still the GPGPU option offering the widest device support in the mobile world by
far.

4.6. Summary of Technology Comparison Results

The comparison of different technologies that can be used for GPU computing on mobile
devices revealed many problems but also a high degree of potential. First, a significant
speedup can be achieved with all technologies in the case of highly data-parallel tasks like
image convolution. Memory transfer costs always need to be taken into consideration.
When shared memory in the SoC architecture of mobile devices can be exploited, these
costs can be seriously reduced. The support on the API level is the key, since the
potential in the hardware already exists. The main issue is portability – OpenGL ES
is the only GPGPU option available on most mobile devices. Just this technology has
no direct GPU computing support and is therefore hard to employ in many parallel
algorithms. RenderScript could be a solution for this dilemma – at least for many
Android devices – but fails because of bad documentation and obscured task scheduling.
Alternatively, OpenCL provides an excellent programming model for GPU computing
and even supports OpenGL interoperability. Although it is widely supported on the
hardware – the Mali-GPU series is a notable example – no noteworthy mobile OS comes
with software level support.

Until this situation changes, OpenGL ES stays the only technology usable for GPU
computing in practical projects. Therefore, it was chosen to undertake optimizations for
a marker detection project as described in the next chapter.
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5. Utilization of GPU Computing for
Marker Detection

In this chapter, GPGPU is employed in a practical software project for mobile devices
in order to assess its potential in the context of real-time applications. A common
computer vision task was chosen for this, which often occurs (in different variants) in
the context of Augmented Reality (AR)1 – real-time marker detection. The following
sections briefly describe the basic algorithms that are usually involved in this task and
will then introduce the CPU-based reference implementation. Then, some starting points
that seem promising for optimizations in terms of GPU computing will be identified,
and possible ways of implementing these improvements will be outlined. Following the
presentation of selected interesting components of the implementation, the results are
shown and interpreted in the final section.

5.1. Marker Detection for Augmented Reality

In AR systems, the view of the real world is enhanced with virtual objects. These objects
need to be placed correctly in the real world view to achieve the effect of seamless
integration of virtual elements in a natural environment. To achieve this, some kind
of target or tag in the real world needs to be defined on which virtual elements can
be correctly placed by calculating the visually appropriate pose. Usually, this target
consists of a marker which can be detected and tracked in the camera video stream.
Although there are also variants providing “marker-less” AR (meaning that arbitrary
objects can be defined as markers), marker-based methods are considered faster and
more reliable [Bag+12, pp. 94-95]. Such markers usually provide some unique code (a
marker ID) on a square that can be extracted and thus enables mapping of different
content to different IDs.

5.1.1. The AR Pipeline and its Theoretic Backgrounds

A complete marker-based AR system consists of several processing steps divided into
three main parts: Marker detection, pose estimation and visualization. Since this work

1The term Augmented Reality describes an environment that provides a view of the real world which is
supplemented with virtual elements. In contrast to Virtual Reality, “AR supplements reality, rather
than completely replacing it.” [Azu97]
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is not primarily dedicated to AR but instead to image processing, the focus will be
set on the first step. It includes many computer vision tasks that might be par-
allelized on a GPU. Furthermore, it is the most computationally expensive part of
the AR system. In this section the relevant algorithms that are especially needed by
this part will be explained. A fully functional AR system will be presented at the
end.

1. Marker detection

Preprocessing (optional):
Perform downscaling and 
grayscale conversion.

Image binarization:
Perform adaptive thresholding.

Possible marker detection:
Filter for quadrilaterals.

2. Pose estimation 3. Visualization

3D-2D point correspondences:
Find marker pose with respect to camera 
location.

Rendering:
Convert marker pose matrix to 
OpenGL transformation matrix. 
Render image and 3D objects.

Marker identification:
Normalize possible markers, 
decode marker ID and filter out 
invalid IDs.

Shape extraction:
Perform border following and 
filter out shapes.

Shape approximation:
Approximate shapes to 
polygons.

Figure 5.1.: Augmented Reality pipeline after [Bag+12]. Images in steps 2-5 are inverted.

There are already complete AR frameworks available for mobile devices, such as AR-
ToolKit2, Qualcomm Vuforia3, AndAR4 or ArUco5. For better evaluation and under-
standing, however, a new implementation was written with the help of OpenCV following
the ideas described in [Bag+12, pp. 47-92]. The approach is based upon the popular AR
system design suggested by Kato and Billinghurst [KB99], which is also implemented
in ARToolKit. The marker IDs are encoded as a binary code in 7x7 cells, of which the

2Published under GNU General Public License. See http://www.hitl.washington.edu/artoolkit/.
3Closed source commercial product. See https://www.vuforia.com/.
4Provides an Android Java API for the underlying ARToolKit. See https://code.google.com/p/

andar/.
5Published under BSD License. See http://www.uco.es/investiga/grupos/ava/node/26.

72

http://www.hitl.washington.edu/artoolkit/
https://www.vuforia.com/
https://code.google.com/p/andar/
https://code.google.com/p/andar/
http://www.uco.es/investiga/grupos/ava/node/26


outer cells must be black (binary “0”) for validation reasons, yielding a 5x5 bitfield. This
AR pipeline includes several image processing steps that are outlined in figure 5.1 and
are explained in more detail:

Preprocessing: In this optional step, the camera frames will be downscaled to a specific
size and converted to grayscale images. This is necessary because high-resolution
camera frames take too long to process, include too many details and fine-grained
noise – which can have negative effect in upcoming processing steps. An output
resolution of 640x360 pixels can be considered sufficient for the following steps.

Image binarization: It is necessary to binarize the image in order to find contours.
Therefore, object contours should remain identifiable after this process. Absolute
thresholding with a fixed value cannot achieve this because it is highly dependent
on lighting conditions and produces problems with gradients. A better approach is
using adaptive thresholding, because it calculates a threshold tx,y for each pixel in
the image I by calculating the mean of the surrounding pixels in the neighborhood
size B (hence employing neighborhood block-based averaging) and subtracting it
with C:

tx,y =

∑b
i=−b

∑b
j=−b I(x+ i, y + j)

B2
− C,where b = bB/2c. (5.1)

Since the threshold tx,y is dependent on the block of surrounding pixels, it produces
contours in the resulting binary image along strong gradient changes (i.e. edges).
When a pixel at x, y is part of a homogenous neighborhood (soft gradient changes),
it is not considered a contour since this pixel value will be smaller than tx,y − C.
So C can be used to control when a change in gradient is considered to be strong.

Shape extraction: This step is crucial because it extracts geometric information about
the contours in the binary image. For the approach presented in [Bag+12, pp. 47-
92], OpenCV’s findContours function is used. This implements an algorithm
suggested by Suzuki and Abe [SA85]. Their paper describes a way to find topolog-
ical information about contours by hierarchical border following. Finally, contours
with less than four contour points are dropped because they cannot form a quadri-
lateral.

Shape approximation: Since most contour points form polygonal curves with multiple
vertices, it should be approximated to a less complex polygon. Here, another
OpenCV function approxPolyDP can help. It implements the Ramer–Douglas–
Peucker algorithm [DP73] for finding a similar curve with fewer points whose
distance (i.e. “dissimilarity”) to the original curve is less than or equal to a specified
approximation accuracy ε.

Possible marker detection: After the polygons have been approximated, all of them
that cannot form a quadrilateral are dismissed. This includes all with a polygon
count not equal to four and those that do not form a convex shape. Furthermore,
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the quadrilaterals that are left must meet the minimum length requirement for
each edge – otherwise, their shape would be too small or too tapered.

Marker identification: Now all shapes that are left are quadrilaterals. Their corner
points can be normalized so that they form a perfect square of equal dimensions
(just like the original marker image). Hence, any skewing or scaling caused by the
perspective view is undone. This can be achieved in two steps. First, a perspective
transform matrix M is obtained so that for each corner point xi, yi from the source
image the following equation in relation to the normalized points x′i, y

′
i is satisfied:6tix′itiy

′
i

ti

 = M ∗

xiyi
1

 . (5.2)

This can be done using the OpenCV function getPerspectiveTransform. In the
next step the matrix M can be applied to the source image. After this transfor-
mation the normalized square image S of the found quadrilateral can be obtained.

S(x, y) = I(px, py),where p = M ∗

xy
1

 . (5.3)

OpenCV’s warpPerspective function can be used for this calculation with each
discovered potential marker. To obtain the marker ID encoded in its binary image,
at first another thresholding operation needs to be applied to the extracted square
image S. This time, a fixed-level threshold is necessary since image segments
are binarized, but not contours. To avoid miscalculation, this step must not be
prone to lighting changes – so a method must be applied which takes the overall
tonal distribution into consideration. Otsu thresholding [Ots79], among others7,
provides these qualities. For this, a grayscale histogram of each extracted image
S is generated and an optimal threshold value for separating the binary classes
(black and white) in the image is calculated with Otsu’s method by minimizing
their intra-class variance. Since the threshold is not applied to the whole camera
frame but only to the extracted squares of possible markers, even such areas that
have a suboptimal tonal distribution due to different lighting conditions within the
picture, can be binarized. After this step, the binary code in the image can be
efficiently extracted by dividing the image into 7x7 cells and counting the white
pixels (and hence also the black pixels) in each cell. Depending on the majority
of pixels belonging to one class or the other, the cell yields a binary “0” or “1”,
resulting in a marker code.8 If no valid marker ID could be found in a square, it
is dismissed so that only correctly identified markers are left.

6This is the general equation. In the context it is used here, ti is always 1.
7Another example is the k-means approach [Llo82] applied to a grayscale image histogram.
8The algorithm further checks the code against a small set of possible codes for each possible marker

orientation. For details about the binary code extraction and validation see [Bag+12, pp. 72-74].
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After the markers have been detected, their position and orientation in relation to the
camera pose can be estimated. This is done by finding 3D-2D point correspondences
between the object in 3D space and its 2D projections (extrinsic matrix), and calcu-
lating the inverse of this matrix.9 It requires a matrix of camera parameters (intrinsic
parameters), which among other things describe the focal length of the camera. OpenCV
provides a function solvePnP to calculate the extrinsic matrix. This matrix can be con-
verted to an OpenGL transformation matrix that can be used in the visualization process
to render virtual objects on top of the found markers.

5.1.2. CPU-based Reference Implementation

Now that the involved algorithms in the marker detection process have been briefly
described, the CPU-based reference implementation and its results are presented. As
already mentioned, the AR system design described by [Bag+12, pp. 47-92] provides the
outline on which a reference system has been implemented. The main steps in the marker
detection part of the AR pipeline have been employed by using the OpenCV functions
named in the previous section. An Android application was written which uses the native
OpenCV 2.4.7 C++ API via the Android NDK. The camera frames are obtained using
OpenCV’s VideoCapture class. The requested camera frame size is 1280x720 pixels. It
is halved during preprocessing to yield frames with pixel dimensions 640x360 to use in
the remaining steps of the marker detection pipeline. Adaptive thresholding is performed
in a 5x5 pixel neighborhood. All possible markers are deskewed and normalized to 64x64
pixels in order to read their marker code.

After marker detection and pose estimation, each marker found is drawn as a square with
a with a different color determined by its ID. OpenGL ES 2.0 is used for the visualization
step.

5.1.3. Evaluation of the Reference Implementation

Testing Environment and Undertaken Measurements

The same Android device as described in section 4.2.1 was used for development and
testing. Time measurements for six steps in the marker detection process were con-
ducted: Preprocessing, adaptive thresholding, shape extraction (finding contours), shape
approximation and filtering for quadrilaterals, marker identification, and marker pose
estimation. If image format conversions or copy operations were necessary, they are in-
cluded in the time measurements (this also applies for the CPU-GPU memory transfers
in the later described accelerated version). The results always represent the average
of 100 measurements that were taken with still images to provide a precise and exact

9The inverse needs to be calculated because the marker pose in relation to the camera needs to be
found and not vice versa. See [Bag+12, pp. 78-81] for more details.
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Scene Valid markers Contour points Possible markers

1 1 452 6
2 4 484 17
3 8 507 17
4 16 493 22

Table 5.1.: Table describing the different test scene images and their properties. The
images themselves can be seen in figures 5.2.

scenario for all measurements. The still images have the same resolution as camera
frames (1280x720) to give realistic results. Four different scenes – each successive image
increasing the amount of markers – are tested. The images are depicted in figures 5.2
and their properties are summarized in table 5.1. Having 16 markers in one frame as in
scene 4 is of course rather unlikely in a real environment, but offers better understand-
ing of how big the impact of the number of markers is on the overall application speed.
Additionally, an overall frame rate in frames per second (fps) was measured for real-time
performance evaluation using the camera.

(a) Scene 1: 1 valid marker. (b) Scene 2: 4 valid markers.

(c) Scene 3: 8 valid markers. (d) Scene 4: 16 valid markers.

Figure 5.2.: Test scene images.
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Performance Results

All markers were correctly detected, identified and visualized in the four test scenes. The
execution times of the individual processing steps can be seen in figure 5.3. As is obvious,
the first three processing steps perform in constant time since they are only dependent on
the input image and downscaled image resolution, which stay the same. Preprocessing
and adaptive thresholding contribute most to the overall processing time, with a total of
about 41 ms added. Shape extraction using findContours executes quite fast – within
3 to 5 ms. Also, shape approximation and filtering for quadrilaterals only rises slightly
with an increased number of contour points. Adding 3 to 5 ms to the execution time, it
is not as significant for the overall speed as the marker identification step, which takes
about 4 to 18 ms depending on the number of quadrilaterals that represent possible
markers. The last step, marker pose estimation, does contribute to total execution time
when an unrealistically high number of markers are present in the scene. The overall
marker detection process executes in between 53 and 83 ms.

1 2 3 4

Pose estim.
Marker ident.
Shape approx. / Filter for quads
Shape extract.
Thresh.
Preproc.
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Figure 5.3.: Execution times for marker detection with the reference implementation
using OpenCV. Individual processing steps are represented in the stacked
bars.

The overall application frame rate is approximately 7 fps, changing only slightly when
more than about 10 markers should be detected. One reason for this rather poor perfor-
mance seems to be slow camera frame rates of the Nexus 10 device in conjunction with
OpenCV (as reported in [xaf13]). Evaluation showed that only 16 fps can be achieved
for a pure camera frame preview (when disabling marker detection or using an OpenCV
“native camera” example project). Improving the camera frame output rate is not part
of this thesis, so the following optimizations will focus on steps in the marker detection
process.
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5.2. Accelerating the Marker Detection Process with GPGPU

5.2.1. Evaluation of Possible GPU-based Optimizations

In order to optimize the performance of the marker detection process using GPGPU,
evaluation of what parts might be efficiently sourced out on the GPU should be per-
formed. Which steps take notable time to complete on the CPU and could potentially
perform better on a GPU – taking into account the additional memory transfer over-
head? Which of the presented technologies and algorithms could be used? In order
to answer these questions, the major detection steps should be examined in more de-
tail:

Preprocessing and image binarization: As mentioned in the previous section, these steps
make up about 50% to 80% of the total processing time. Since the involved al-
gorithms work in a data-parallel fashion, they can be efficiently implemented for
GPU computing. Especially image scaling can be easily accelerated with OpenGL.
Employing image binarization via adaptive thresholding on a graphics unit is fea-
sible since it is a kind of linear filter operation. The averaging operations of an
adaptive thresholding filter are separable (see section 4.1.1) so this part could be
implemented as two-pass filter with OpenGL fragment shaders.

Shape extraction, approximation and filtering for quads: Shape extraction (i.e. ex-
tracting contours from the binary image) does not overtly hinder the detection
process. Furthermore, parallelization is difficult since the original algorithm em-
ploys border following that involves a map of border states (see limits for parallel
computing in section 2.4.2) and many branches. However, implementing the PC
lines variant of Hough transform (see section 4.1.2) could be beneficial since a
shape approximation step could be omitted and a continuous processing pipeline
on the GPU is assured. On the other hand, possible quadrilaterals in the line
intersections must be detected in an additional step. With respect to the issues
that are involved with implementing the Hough transform variant using OpenGL
ES 2.0 or OpenCL (see sections 4.5.3 and 4.3.3), this approach should be set aside.

Marker identification: This step makes up 7 to 21% of the total processing time, depend-
ing on how many possible markers have been detected. Improving the execution
speed of this step could contribute to faster overall performance. Transforming
and normalizing the detected quadrilaterals to form equally sized squares can be
efficiently mapped to a graphics unit. Using OpenGL seems appropriate since it
is a task that is in alignment with its main purpose – altering a shape and its
texture according to a given transformation. Otsu thresholding could also be ac-
celerated by calculating the image histogram of each normalized square image on
the GPU, where the thresholding process itself could also be performed. Reading
the marker code from the binarized square image could be sped up by downscaling
each portion of it to pixel dimensions of 7x7 (according to the number of marker
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code cells). Linear interpolation can be used for downscaling. Using this method,
the grayscale value of each pixel of the downscaled image represents the proportion
of black and white pixels of each marker cell. Retrieving the marker code can then
be done very quickly on the CPU side.

Marker pose estimation: This step does not have a big impact on the overall perfor-
mance, hence GPGPU-based optimization for it should be set aside.

5.2.2. Implementation Approach

GPU sideCPU side

Input image
Preprocessing

(downscaling, grayscale 
conversion)

Adaptive thresholding
(Pass 1)

Adaptive thresholding
(Pass 2)Binary image

Shape extraction
findContours()

Shape approximation / Filtering
approxPolyDP()

Coordinates of 
possible markers

Quadrilaterals normalization
(Deskew possible marker quads)

Normalized possible markers 
image

Marker identification
(binarize with Otsu, read marker 

code)

A

B

C

D

1

2

3

4

5

Figure 5.4.: Marker detection pipeline using the GPU for certain processing steps. All
images but the first are inverted.

Based on the previous observations, an implementation approach was devised. The aim
was to design a continuous processing pipeline that harnesses both the strengths of the
GPU (efficient computation of data-parallel tasks) and the CPU (efficient execution of
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complex algorithms that involve branching and dynamic loops) while avoiding unnec-
essary memory transfer operations. Hence, the preprocessing and image binarization
steps should be performed on the graphics unit, while shape extraction and approxima-
tion are better suited for CPU processing. Marker identification includes parts that can
take advantage of GPU computing (deskewing of possible markers for normalization,
calculating the histogram and thresholding), but other parts like Otsu threshold value
calculation and reading the marker code are shortened when performed on the CPU
side.

Along with these requirements comes the question of which GPGPU technology to use.
A conclusion about the situation of available GPGPU technologies on mobile devices has
already been drawn in section 4.6 and applies in this context: Since OpenGL ES 2.0 is
the only portable solution with widespread support (in contrast to OpenCL) and decent
documentation (in contrast to RenderScript), all other technologies are not worth further
consideration. Furthermore, it was shown that data-parallel image processing tasks can
be implemented very efficiently with it (see section 4.5.2).

During prototype development several problems occurred, which prevented implemen-
tation of all the previously mentioned processing steps on the GPU. First, it was found
out that it is not possible to use texture lookups in vertex shaders when the texture
to be read from is previously created dynamically as a color attachment to an FBO. In
practice this means that it is not possible to chain the output of one rendering pass to
another rendering pass that tries to read this output (a texture attached to an FBO)
in a vertex shader. However, using a fragment shader works. Since it is necessary to
perform the texture lookup in a vertex shader for the histogram calculation, this step
could not be implemented on the GPU with OpenGL ES 2.0. To provide a continuous
processing pipeline all following operations (Otsu thresholding and reading the marker
code) remain calculated by the CPU.

A working approach was devised with respect to the aforementioned problems and is de-
picted in figure 5.4. As can be seen, four rendering passes are performed on the graphics
unit to process the input camera image. The individual steps are denoted by numbers
in the mentioned figure and are explained in more detail:

Preprocessing (1): This step is implemented in a fragment shader that only calculates
the scalar product of the RGB color vector of each pixel with a constant vector
of weights for each color channel in order to get a grayscale value based on the
luminance Y :10

Y =

RG
B

 ·
0.299

0.587
0.114

 (5.4)

10The channel weights are derived from the luminance calculation in the YUV color model [Rus07, p. 47]
and are also implemented in OpenCV’s cvtColor function.
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To perform the downscaling of the input image, the output size for the FBO render-
ing is set by using glViewport with half of the original image dimensions. Trilinear
sampling (via GL LINEAR MIPMAP LINEAR) is employed on the GPU, interpolating
between the pixels of the two subsequent mipmap levels [MGS09, p. 192]. For
as yet undetermined reasons, this setting performed slightly faster than bilinear
filtering (GL LINEAR), at least on the given hardware.

Image binarization (2 and 3): Adaptive thresholding is implemented via performing
two rendering passes on the GPU as shown in listings 5.1 and 5.2. An averag-
ing operation over a 5x5 or 7x7 two-dimensional block size is performed, which
can be separated into two orthogonal one-dimensional operations. This approach
reduces the number of texture read and division operations for a block size N
from N2 to 2N . The method was introduced in section 4.1.1 and implemented for
a Gauss kernel in section 4.5.2. It also involves accessing the neighboring pixels
in the texture with a pixel delta value passed in as uniform vector uPxD, which
describes the distance between single pixels in normalized texture coordinate (s, t)
space. In case of adaptive thresholding, the implementation uses slight differences
in order to binarize the image. In the first rendering pass, the grayscale values
of the center pixel at x, y (original pixel value centerGray) and two neighboring
pixels in each horizontal direction are fetched from the texture that was created
in the preprocessing step (lines 3-9). The average of all five pixels is calculated
and the result is saved in the “red” color channel of the final fragment color (gl -

FragColor) (line 13). The “green” channel is set to centerGray in order to pass
the original grayscale value of the center pixel to the next rendering pass. The
other two color channels are not used. In the second rendering pass the same aver-
aging operations are performed in vertical direction on the output of the previous
pass (lines 7-13).11 It yields a final averaged value avg from which a constant bigC
is subtracted in order to form the thresholding value avg - bigC according to the
original algorithm also implemented in OpenCV. By using the step, function the
original grayscale value centerGray (taken from the “green” channel of the center
pixel) is compared to the thresholding value which results in the binarized output
image (lines 15-17). This is copied back to main memory for further processing.

Deskewing of possible markers (4): After the binarized image has been processed on
the CPU side to detect quadrilaterals that form possible markers, these need to
be deskewed and normalized for later marker code recognition. The GPU does
this by mapping the original coordinates of each found quadrilateral to the texture
coordinates of squares of equal size. These original coordinates describe the corners
of the quadrilaterals in the downscaled image of size W ×H. In order to deskew
them, the efficient texture mapping functionalities of a graphics unit are exploited.
The marker deskewing stage in the rendering pipeline is informed about the number
of found quadrilaterals. It then calculates the output texture size so that each

11For efficient memory access, the input texture is rotated by 90◦ as also already implemented for the
Gauss kernel in section 4.5.2.
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normalized square fits in an area of 64x64 pixels. Therefore, this size equals 64∗N
pixels for N possible markers.12 After that, it constructs the vertex coordinate
buffer for each square so that they are rendered next to each other (see listing
A.2 in the appendix). The texture coordinate buffer, which is also calculated
in this step, essentially contains the information for finally deskewing the found
quadrilaterals. Here, the normalized texture coordinate pair [s, t] for each vertex
of each square is calculated as [s, t] = [x/W, y/H] in order to map the corners of
the found quadrilaterals to the equal-sized squares, as shown in figure 5.5. Once
again, the output is rendered into a texture that is attached to an FBO. It is copied
back to the main memory for the final marker code recognition process.

1 // ( vTex , uPxD, sTex are de f ined be fo r e )
2 void main ( ) {
3 f loat centerGray = texture2D ( sTex , vTex ) . r ; // ge t center p i x e l va lue
4 // sum of ho r i z on t a l p i x e l neighborhood
5 f loat sum = texture2D ( sTex , vTex + vec2 (uPxD. x ∗ −2.0 , 0 . 0 ) ) . r +
6 texture2D ( sTex , vTex + vec2 (uPxD. x ∗ −1.0 , 0 . 0 ) ) . r +
7 centerGray +
8 texture2D ( sTex , vTex + vec2 (uPxD. x ∗ 1 . 0 , 0 . 0 ) ) . r +
9 texture2D ( sTex , vTex + vec2 (uPxD. x ∗ 2 . 0 , 0 . 0 ) ) . r ;

10 // ge t the average
11 f loat avg = sum / 5 . 0 ;
12 // Resu l t s t o r e s average p i x e l va lue (R) and o r i g i n a l gray va lue (G)
13 gl FragColor = vec4 ( avg , centerGray , 0 . 0 , 1 . 0 ) ;
14 }

Listing 5.1: Fragment shader for adaptive thresholding (rendering pass 1).

1 // (BLOCKSIZE, vTex , uPxD, sTex are de f ined be f o re )
2 void main ( ) {
3 // centerPx s t o r e s va lue s from pass 1 : h o r i z on t a l avg and or i g . gray va lue
4 vec4 centerPx = texture2D ( sTexture , vTexCoord ) ;
5 const f loat bigC = (BLOCKSIZE + 4) / 255 . 0 ;
6 // sum of v e r t i c a l p i x e l neighborhood ( input image i s ro ta t ed by 90deg ! )
7 f loat sum = texture2D ( sTex , vTex + vec2 (uPxD. y ∗ −2.0 , 0 . 0 ) ) . r +
8 texture2D ( sTex , vTex + vec2 (uPxD. y ∗ −1.0 , 0 . 0 ) ) . r +
9 centerPx . r +

10 texture2D ( sTex , vTex + vec2 (uPxD. y ∗ 1 . 0 , 0 . 0 ) ) . r +
11 texture2D ( sTex , vTex + vec2 (uPxD. y ∗ 2 . 0 , 0 . 0 ) ) . r ;
12 // ge t the average
13 f loat avg = sum / 5 . 0 ;
14 // crea t e inve r t ed b inary va lue
15 f loat bin = 1.0− s tep ( avg−bigC , centerPx . g ) ; // centerPx . g i s o r i g . gray va lue
16 // s t o r e t h r e sho l d ed va lue s
17 gl FragColor = vec4 ( bin , bin , bin , 1 . 0 ) ;
18 }

Listing 5.2: Fragment shader for adaptive thresholding (rendering pass 2).

12When the maximum texture width (usually 4096 pixels) is exceeded (with N > 64), another row is
added and the texture height is increased by 64 pixels.
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Detected possible markers in the scene: Deskewing possible markers:

Extract original coordinates of each possible 
marker.

Render each possible marker as normalized 
square into one output texture.

Figure 5.5.: Deskewing of possible markers on the GPU.

Four copy operations between the CPU and GPU are necessary during the marker de-
tection process. The first (denoted as A in figure 5.4) is to copy the camera image to
the GPU texture memory.13 Since the input image is not yet downscaled, it represents
the most expensive copy operation. Copying back the binary image (operation B) is
faster since the image is already downscaled to half of its original size. For normalizing
possible markers (C ), only the coordinates of the found quadrilaterals in the image are
passed as vertex and texture buffers to the GPU. Thus, this operation is very fast. The
time for the last copy operation (D) is dependent on the number of possible markers
that need to be deskewed, as explained in step 4.

Problems

The suggested approach of dynamically resizing the output frame in step 4 (deskewing
possible markers) to keep necessary data transfer to a minimum caused some problems.
Every time the number of detected quadrilaterals in a frame changed (which happens
nearly every frame), the output texture attached to the FBO of this process needed to
be recreated and set to a new size. This led to recurring random empty output frames
for this step, resulting in unstable marker detection. To circumvent this, the fix applied

13Since the camera image must be present on the SoC memory, there could be a way to directly access
this data and hence speed up the process, similar to the Android gralloc or GraphicsBuffer functions
described in section 4.5.2. However, optimizing camera image access is not in the focus of this work.

83



at first was to render each square in a loop one by one to a 64x64 pixels sized framebuffer
and fetch the result. Unfortunately, with this approach only the first square was rendered
and all subsequent render requests failed. This is because it is only possible to draw a
result into an FBO once within an overall rendering cycle. The solution was to set
the output frame size to a fixed minimum of 1024x64 pixels, allowing up to 16 possible
markers to be deskewed per rendering cycle, which is sufficient in most cases. If it is
not, the output size would be increased temporarily to make place for a bigger amount
of detected possible markers. With this solution, highly frequent recreation of the FBO-
attached texture could be circumvented. The drawback, of course, is that unnecessarily
often a big amount of data needs to be copied from the GPU memory space – in the worst
case 16 times more than would be necessary. To avoid this the solution was extended
so that instead of calling memcpy to copy the whole graphics buffer, only the necessary
area is copied by using OpenCV’s Mat::copyTo in conjunction with a region of interest
(ROI).

The adaptive thresholding on the GPU was observed to produce finer contours and
is a little more prone to image noise than the OpenCV equivalent. This may be be-
cause the preprocessed (downscaled) image is calculated differently in a prior step.
It has no influence on the stability of the marker detection process. However, since
there are more contour points generated in the shape extraction process, this and the
approximation step on the CPU run slightly slower. Different approaches were tried
to reduce the number of generated contour points (optimizing the C parameter for
thresholding, Gauss filtering, dilation). Each of these either did not provide satisfactory
results or added additional processing time, impeding possible performance improve-
ments.

5.2.3. Results

According to the described implementation concept, a partly GPU-accelerated prototype
was developed. All markers in the test images were successfully detected and the same
marker codes were extracted. The execution times for the different scenes and individual
processing steps are presented in figure 5.6. The results include the necessary copy
operations and were measured using glFinish before and after each step to retrieve exact
timings for these operations. As can be seen, the preprocessing step can be executed in
significantly less time on the GPU than on the CPU. About 12 ms are measured for the
input images for size 1280x720 pixels. The largest time increment (about 9 ms) is caused
by the image upload to the GPU. Adaptive thresholding on the GPU takes about the
same time and is performed about 4 ms faster than on the CPU, including copying back
the binary result image. The marker identification step could be sped up significantly by
employing parallel quadrilateral deskewing on the GPU – it can be reduced to between 4
and 6 ms, saving up to 10 ms. This also results in the biggest speedup rate per processing
step as shown in figure 5.7b. However, since preprocessing and adaptive thresholding are
the most time consuming tasks of the overall marker detection process, their speedup
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Figure 5.6.: Execution times for marker detection with the OpenGL accelerated ap-
proach. Individual processing steps are represented in the stacked bars.

has stronger influence on the overall performance. An altogether speedup of between
1.2x and 1.35x was achieved and is depicted in figure 5.7a.

To measure the overall performance in a realistic scenario, the application prototype was
again tested using the camera stream in the same environment as the CPU reference
implementation. At first, the observed frame rate of about 8 fps was disappointing, but
occasional spikes occurred in which the frame rate increased to as much as 14 fps. This
is correlated to the marker identification step. When no possible markers are detected,
the whole process of deskewing possible markers and copying back the result image was
skipped and hence the frame rate rose. The point of time when to call glFinish is of
great importance to performance and detection stability. Removing all glFinish calls
increased the framerate to about 14 fps, but also introduced unstable detection results.
The reason for this was that the framebuffer contents, which are copied back from the
GPU, would be sometimes empty or outdated when omitting glFinish, resulting in
faulty marker detection. Adding glFinish before each framebuffer read operation (i.e.
once after the adaptive thresholding and the deskewing step) solves this problem and
leads to a frame rate of about 10 fps, which corresponds as expected with the measured
speedup rates of about 1.3x.
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Figure 5.7.: Speedup rates for marker detection with the OpenGL accelerated approach
as compared to the reference implementation.

5.3. Summary of GPU-accelerated Marker Detection Results

GPU-accelerated marker detection could be successfully implemented. By sourcing out
some calculations to the graphics unit, a speedup in performance could be achieved.
However, this practical project also illustrates the problems and limits of GPGPU on
mobile devices in a common application scenario such as marker detection for AR. Many
possible speed improvements are seriously reduced by mandatory memory copy opera-
tions. This problem would be negligible were more processing steps computed on the
GPU side, but implementing a continuous processing pipeline there is hard. Some al-
gorithms are impossible to implement efficiently by means of OpenGL ES 2.0 shaders.
Because of this, only three steps of the marker detection processing pipeline could be
fully or partly accelerated by the GPU. The development efforts for this are admit-
tedly high in comparison to the achieved frame rate improvement, but nevertheless it
shows the potential of the basic concept of distributing work within a mobile plat-
form to specialized hardware such as a GPU. With future improvements, especially in
the area of graphics and heterogenous computing APIs, this potential could be un-
leashed.
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6. Summary, Conclusions, and Future Work

This chapter will provide an overview about the obtained results. In addition, the current
situation of GPGPU on mobile device platforms will be summarized. Based on these con-
clusions, future work and potential in this field of research are outlined.

6.1. Summary of Results and Evaluation

The hardware design of mobile devices exhibits distinctive differences when compared
to desktop or laptop systems. Mobile device development options suffer from limited
hardware resources and more restrictive APIs, as was explained in the beginning of chap-
ter 3. Nevertheless, three different technologies that provide GPU computing support
on such devices could be found, explored and evaluated on their merits as described
in section 3.2. Previous research exists regarding the performance potential for mobile
devices when being used to accelerate certain algorithms on the GPU, but most of them
focused only on OpenGL ES 2.0.

In comparison to prior research in this field, this thesis did not limit itself to examining
the GPGPU potentials of OpenGL ES 2.0, but also evaluated OpenCL and Render-
Script (RS) in chapter 4. The latter underwent only limited examination due to missing
elements of documentation and functionality. Several prototypes could be developed in
order to study the potential of each technology in different branches of DSP, especially
image processing. This proved to be an important branch with lots of potential for
GPU computing, yielding speedup rates of up to 8x on the testing device. Although
the technology is still in its infancy on mobile platforms, it is nevertheless worthwhile to
perform highly data-parallel computations on the GPU.

This is not to say all problems with parallelization on mobile GPUs are negligible.
Heterogenous computing in general, and GPGPU on mobile devices in particular, present
varying problems to the developer. Portability is the main issue – at the time of writing
it is only possible to support a wide range of devices by using OpenGL ES 2.0, which
introduces many limitations in terms of GPU computing support. Furthermore, even
with this technology it is necessary to implement certain platform- or even device-specific
tricks to circumvent GPU-CPU memory transfer bottlenecks, as explained in section
4.5.2. Depending on the graphics rendering performance and memory transfer speed of
the device, it is still unclear for the developer if an application would perform faster
with or without GPU acceleration. Unfortunately only one testing device was available
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during research for this thesis, so the performances of different hardware could not be
compared. Related research such as [EH11; HSR12; Ris+13] shows heterogenous results
for different devices.

All in all the effort of implementing GPU accelerated algorithms that not only run on a
wide range of mobile devices but really accelerate the overall performance is very high
and could quickly exceed the resulting performance gain. A wider support of OpenCL
could help with this problem, because its API allows querying hardware characteristics
in order to optimize the algorithm accordingly in addition to providing automatic work
scheduling. RS, on the other hand, hides all hardware characteristics from the developer
and tries to determine the most efficient work scheduling approach by itself. Unfortu-
nately the technology was still not very evolved at the time of writing. Therefore, a final
evaluation cannot be given.

6.2. Future Prospects

Harnessing the power of the GPU for general-purpose computing will definitely become
more important in the future, especially with upcoming hardware designs that reduce the
strict separation between different kinds of processing units. Many hardware manufac-
turers have realized that only increasing the clock rate of their CPUs does not maintain
value as long, especially not for embedded systems that require low heat generation and
power consumption. After the strategy of adding more and more processing cores to a
CPU die reaches its peak, the future for mobile device hardware likely will belong to het-
erogenous computing. AMD promotes its new heterogenous systems architecture (HSA)
based on accelerated processing units (APUs) that “[combine] the benefits of a CPU
and a GPU into a single chip” [AMD14]. The “heterogenous queuing” model promises
to provide close cooperation between the CPU and GPU, enabling each to distribute
workload without involvement on the operating system level. With this, members of
the HSA Foundation hope to “boost performance and battery life on mobile devices”
[Hal13].

A seamless integration of different, specialized processing units is not yet widely available
either for hardware or software. GPGPU on mobile devices requires a lot of effort to
provide portability, stability, and improved performance.
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A. Appendix

A.1. Additional Source Code Listings

A.1.1. Vertex Shader Listing for Section 4.5.3

1 attribute vec2 aTexCoord ; // t e x t u r e lookup coord inate
2 attribute f loat aTSCoordType ; // type o f l i n e po in t : T or S space , beg in or end
3 varying f loat vFragAddVal ; // va lue t ha t w i l l be added in the fragment shader
4 uniform sampler2D sTexture ;
5 // Define the coord inate f a c t o r s and summands f o r
6 // l i n e beg inn ings and endings in T and S space , r e s p e c t i v e l y .
7 // mat2x4 i s not a v a i l a b l e in OGLES 2.0 , hence a 4x4 matrix i s used .
8 const mat4 tsCoordFactors = mat4(
9 0 , −1, 0 , 0 , // t beg in

10 0 , 1 , 0 , 0 , // t end
11 0 , 1 , 0 , 0 , // s beg in
12 0 , 1 , 0 , 0 // s end
13 ) ;
14 const mat4 tsCoordAdd = mat4(
15 −1, 0 , 0 , 0 , // t beg in
16 0 , 0 , 0 , 0 , // t end
17 0 , 0 , 0 , 0 , // s beg in
18 1 , 0 , 0 , 0 // s end
19 ) ;
20 void main ( ) {
21 // ge t the b inary va lue at aTexCoord
22 f loat bin = texture2DLod ( sTexture , aTexCoord , 0 . 0 ) . r ;
23 // ge t the prov ided index t ha t s e l e c t s a coord inate f a c t o r and summand
24 int idx = int ( aTSCoordType ) ;
25 vec2 coordFact = tsCoordFactors [ idx ] . xy ;
26 vec2 coordAdd = tsCoordAdd [ idx ] . xy ;
27 // normal ize the coord ina te s and crea t e a f l i p p e d vers ion
28 vec2 normCoordStd = −1.0 ∗ aTexCoord + 2 .0 ∗ aTexCoord ;
29 vec2 normCoordFlipped = normCoordStd . yx ;
30 // s e l e c t the standard or the f l i p p e d vers ion depending on TS coord type
31 vec2 f i na lCoord = vec2 (0 , 0) ;
32 i f ( idx == 0 | | idx == 3) f ina lCoord = normCoordStd ;
33 else f i na lCoord = normCoordFlipped ;
34 // c a l c u l a t e one l i n e po in t in TS space
35 vec2 l i n ePo i n t = bin ∗ ( coordFact ∗ f i na lCoord + coordAdd ) ;
36 // s e t the va lue t ha t w i l l be added in the fragment shader
37 vFragAddVal = bin ∗ ( 1 . 0 / 256 . 0 ) ;
38 // s e t the po s i t i on o f the l i n e po in t
39 gl Position = vec4 ( l i nePo in t , 0 . 0 , 1 . 0 ) ;
40 }

Listing A.1: Vertex shader for generating PC lines.
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A.1.2. Marker Deskewing Function Listing for Section 5.2.2

1 #define NORMCOORD( c ) (−1.0 f + 2 .0 f ∗ ( c ) )
2 // ( . . . )
3 void PipelineProcMarkerWarp : : addMarkerOriginCoords ( vector<cv : : Point2f> coords ) {
4 // generate v e r t e x and t e x t u r e coord ina te s
5 unsigned int ve r tBu fOf f s e t = lastAddedMarkerNum ∗ QUAD VERTEX BUFSIZE;
6 unsigned int t exBufOf f s e t = lastAddedMarkerNum ∗ QUAD TEX BUFSIZE;
7 // coords conta ins 4 skewed ve r t e x coord ina te s ( as a b so l u t e p i x e l coord ina te s )
8 const cv : : Po int2 f v0 = coords [ 0 ] ;
9 const cv : : Po int2 f v1 = coords [ 1 ] ;

10 const cv : : Po int2 f v2 = coords [ 2 ] ;
11 const cv : : Po int2 f v3 = coords [ 3 ] ;
12 // c a l c u l a t e c e l l in which the marker w i l l be rendered
13 const unsigned int c e l lX = lastAddedMarkerNum % maxMarkersPerRow ;
14 const unsigned int c e l lY = lastAddedMarkerNum / maxMarkersPerRow ;
15 const f loat vertXLeft = NORMCOORD(( f loat ) c e l lX / ( f loat )maxCellX ) ;
16 const f loat vertXRight = NORMCOORD(( f loat ) ( c e l lX+1) / ( f loat )maxCellX ) ;
17 const f loat vertYBottom = NORMCOORD(( f loat ) c e l lY / ( f loat )maxCellY ) ;
18 const f loat vertYTop = NORMCOORD(( f loat ) ( c e l lY+1) / ( f loat )maxCellY ) ;
19 // ve r t e x 1 : bottom l e f t
20 setVertBufCoord ( vertexBuf+vertBufOf f se t , vertXLeft , vertYBottom ) ;
21 setTexBufCoord ( texCoordBuf+texBufOf f set , v0 . x/inFrameW , v0 . y/inFrameH) ;
22 // ve r t e x 2 : bottom r i g h t
23 setVertBufCoord ( vertexBuf+ver tBu fOf f s e t +3, vertXRight , vertYBottom ) ;
24 setTexBufCoord ( texCoordBuf+texBufOf f s e t+2, v1 . x/inFrameW , v1 . y/inFrameH) ;
25 // ve r t e x 3 : top l e f t
26 setVertBufCoord ( vertexBuf+ver tBu fOf f s e t +6, vertXLeft , vertYTop ) ;
27 setTexBufCoord ( texCoordBuf+texBufOf f s e t+4, v3 . x/inFrameW , v3 . y/inFrameH) ;
28 // ve r t e x 4 : top r i g h t
29 setVertBufCoord ( vertexBuf+ver tBu fOf f s e t +9, vertXRight , vertYTop ) ;
30 setTexBufCoord ( texCoordBuf+texBufOf f s e t+6, v2 . x/inFrameW , v2 . y/inFrameH) ;
31 // increment number o f added markers
32 lastAddedMarkerNum++;
33 }

Listing A.2: Calculating vertex and texture coordinates of possible markers.
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A.2. Provided Files on the Enclosed CD

Test Images and Results for Evaluations of the Prototypes

The image sets that have been used throughout this thesis for evaluating the performance
and quality of certain implementations are located in the directory test images on the
enclosed CD. The results of the performance measurements were saved in CSV format
in the results folder.

Source Code of Prototype Applications

The source code of the programs developed during this thesis are included as separate
ZIP-files in directory sources on the enclosed CD. Each of the programs has been tested
on a Google Nexus 10 device with Android 4.2.1 (see section 4.2.1 for detailed device
specifications), but apart from the applications that use OpenCL (see section 3.2.1 for
OpenCL device support) the included programs should run on all Android devices with
an OS version of at least 3.0.

The source code can be imported into integrated development environments such as
Eclipse. The image processing projects require the OpenCV Java package be imported.1

Many of the provided projects use the Android NDK, which requires separate compi-
lation of the C/C++ part of the source code. Because some projects use SWIG2 to
generate the JNI source parts automatically, the command listed in the file swigcmd in
the project root directory has to be invoked beforehand.3 Most applications are written
to provide statistical information about their performance and unless otherwise noted,
they do not provide a sophisticated graphical user interface. Furthermore, the majority
of these programs can only be configured at compile-time by adjusting some constants
in the source code or in the compile settings. More information about this is given for
each project in the following records:

ClAudio implements the OpenCL audio synthesis project described in section 4.3.4.
Uses the NDK. Buffer size and sample rate can be configured in file jni/cl audio.c.

ClImageProc implements OpenCL-based image convolution and Hough transform from
sections 4.3.2 and 4.3.3. Uses the NDK. Image processing algorithm and other op-
tions can be configured in src/net/mkonrad/climageproc/MainActivity.java

and jni/Android.mk.

CvImageDroid is the CPU-based reference implementation for image convolution and
Hough transform as described in section 4.2.3. Configuration options can be set
in src/net/mkonrad/imagedroid/MainActivity.java.

1See http://opencv.org/opencv-java-api.html.
2See http://www.swig.org/.
3If the project is imported into Eclipse, the complete build chain is already provided and no separate

SWIG invocation and NDK-based library compilation is necessary.
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CvMarkerDetect contains the full AR project described in chapter 5. The AR pipeline
is implemented in the self developed cv accar library, whose sources are located at
jni/cv accar. It can be configured by editing jni/cv accar/common/conf.cpp to
enable or disable GPU acceleration among other options. The Android application
shows an options panel with which it is possible to view the output at different
AR pipeline stages.

GlAudio is an attempt to generate audio with OpenGL ES 2.0 shaders, which failed
because of several reasons described in section 4.5.4.

GlImageProc is a prototype that implements the initial approach for image convolution
with OpenGL ES 2.0 shaders as depicted in section 4.5.2. It makes use of the
OpenGL Java API and employs glReadPixels for memory transfer. Options can
be edited in the file src/net/mkonrad/glimageproc/GLRenderer.java.

GlImageProcNative is an NDK-based port of the above project and furthermore im-
plements an optimized approach as described in 4.5.2 (including the usage of
EGL image extensions instead of glReadPixels). It additionally implements
Hough transform. The comprehensive source code is mainly implemented in C++
classes under jni/gl gpgpu. Options can be set in the file src/net/mkonrad/-

glimageprocnative/MainActivity.java.

RsImageProc implements RenderScript-based image convolution as depicted in sec-
tion 4.4.2. Configurations can be edited in file src/net/mkonrad/rsimageproc/-

MainActivity.java.

A.3. Comparison of Related Work

See table A.1 on next page.
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